Tristan Dubos, Axel Poulet, Céline Gonthier-Gueret, Guillaume Mougeot, Emmanuel Vanrobays, Yanru Li, Sylvie Tutois, Emilie Pery, Frédéric Chausse, Aline V Probst, Christophe Tatout, Sophie Desset
{"title":"利用nucleusj2.0对核组织进行自动三维生物成像分析。","authors":"Tristan Dubos, Axel Poulet, Céline Gonthier-Gueret, Guillaume Mougeot, Emmanuel Vanrobays, Yanru Li, Sylvie Tutois, Emilie Pery, Frédéric Chausse, Aline V Probst, Christophe Tatout, Sophie Desset","doi":"10.1080/19491034.2020.1845012","DOIUrl":null,"url":null,"abstract":"<p><p>NucleusJ 1.0, an ImageJ plugin, is a useful tool to analyze nuclear morphology and chromatin organization in plant and animal cells. NucleusJ 2.0 is a new release of NucleusJ, in which image processing is achieved more quickly using a command-lineuser interface. Starting with large collection of 3D nuclei, segmentation can be performed by the previously developed Otsu-modified method or by a new 3D gift-wrapping method, taking better account of nuclear indentations and unstained nucleoli. These two complementary methods are compared for their accuracy by using three types of datasets available to the community at <u>https://www.brookes.ac.uk/indepth/images/</u> . Finally, NucleusJ 2.0 was evaluated using original plant genetic material by assessing its efficiency on nuclei stained with DNA dyes or after 3D-DNA Fluorescence <i>in situ</i> hybridization. With these improvements, NucleusJ 2.0 permits the generation of large user-curated datasets that will be useful for software benchmarking or to train convolution neural networks.</p>","PeriodicalId":74323,"journal":{"name":"Nucleus (Austin, Tex.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19491034.2020.1845012","citationCount":"13","resultStr":"{\"title\":\"Automated 3D bio-imaging analysis of nuclear organization by NucleusJ 2.0.\",\"authors\":\"Tristan Dubos, Axel Poulet, Céline Gonthier-Gueret, Guillaume Mougeot, Emmanuel Vanrobays, Yanru Li, Sylvie Tutois, Emilie Pery, Frédéric Chausse, Aline V Probst, Christophe Tatout, Sophie Desset\",\"doi\":\"10.1080/19491034.2020.1845012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>NucleusJ 1.0, an ImageJ plugin, is a useful tool to analyze nuclear morphology and chromatin organization in plant and animal cells. NucleusJ 2.0 is a new release of NucleusJ, in which image processing is achieved more quickly using a command-lineuser interface. Starting with large collection of 3D nuclei, segmentation can be performed by the previously developed Otsu-modified method or by a new 3D gift-wrapping method, taking better account of nuclear indentations and unstained nucleoli. These two complementary methods are compared for their accuracy by using three types of datasets available to the community at <u>https://www.brookes.ac.uk/indepth/images/</u> . Finally, NucleusJ 2.0 was evaluated using original plant genetic material by assessing its efficiency on nuclei stained with DNA dyes or after 3D-DNA Fluorescence <i>in situ</i> hybridization. With these improvements, NucleusJ 2.0 permits the generation of large user-curated datasets that will be useful for software benchmarking or to train convolution neural networks.</p>\",\"PeriodicalId\":74323,\"journal\":{\"name\":\"Nucleus (Austin, Tex.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19491034.2020.1845012\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleus (Austin, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19491034.2020.1845012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleus (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19491034.2020.1845012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Automated 3D bio-imaging analysis of nuclear organization by NucleusJ 2.0.
NucleusJ 1.0, an ImageJ plugin, is a useful tool to analyze nuclear morphology and chromatin organization in plant and animal cells. NucleusJ 2.0 is a new release of NucleusJ, in which image processing is achieved more quickly using a command-lineuser interface. Starting with large collection of 3D nuclei, segmentation can be performed by the previously developed Otsu-modified method or by a new 3D gift-wrapping method, taking better account of nuclear indentations and unstained nucleoli. These two complementary methods are compared for their accuracy by using three types of datasets available to the community at https://www.brookes.ac.uk/indepth/images/ . Finally, NucleusJ 2.0 was evaluated using original plant genetic material by assessing its efficiency on nuclei stained with DNA dyes or after 3D-DNA Fluorescence in situ hybridization. With these improvements, NucleusJ 2.0 permits the generation of large user-curated datasets that will be useful for software benchmarking or to train convolution neural networks.