用于多模态和多色生物成像的磁荧光纳米探针。

IF 2.2 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS
Aditya Yadav, Chethana Rao, Navneet Chandra Verma, Pushpendra Mani Mishra, Chayan Kanti Nandi
{"title":"用于多模态和多色生物成像的磁荧光纳米探针。","authors":"Aditya Yadav,&nbsp;Chethana Rao,&nbsp;Navneet Chandra Verma,&nbsp;Pushpendra Mani Mishra,&nbsp;Chayan Kanti Nandi","doi":"10.1177/1536012120969477","DOIUrl":null,"url":null,"abstract":"<p><p>Although, superparamagnetic iron oxide nanoparticles (SPIONs) have extensively been used as a contrasting agent for magnetic resonance imaging (MRI), the lack of intrinsic fluorescence restricted their application as a multimodal probe, especially in combination with light microscopy. In Addition, the bigger size of the particle renders them incompetent for bioimaging of small organelles. Herein, we report, not only the synthesis of ultrasmall carbon containing magneto-fluorescent SPIONs with size ∼5 nm, but also demonstrate its capability as a multicolor imaging probe. Using MCF-7 and HeLa cell lines, we show that the SPIONs can provide high contrast mulicolor images of the cytoplasm from blue to red region. Further, single particle level photon count data revealed that the SPIONs could efficaciously be utilized in localization based super resolution microscopy in future.</p>","PeriodicalId":18855,"journal":{"name":"Molecular Imaging","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1536012120969477","citationCount":"1","resultStr":"{\"title\":\"Magnetofluorescent Nanoprobe for Multimodal and Multicolor Bioimaging.\",\"authors\":\"Aditya Yadav,&nbsp;Chethana Rao,&nbsp;Navneet Chandra Verma,&nbsp;Pushpendra Mani Mishra,&nbsp;Chayan Kanti Nandi\",\"doi\":\"10.1177/1536012120969477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although, superparamagnetic iron oxide nanoparticles (SPIONs) have extensively been used as a contrasting agent for magnetic resonance imaging (MRI), the lack of intrinsic fluorescence restricted their application as a multimodal probe, especially in combination with light microscopy. In Addition, the bigger size of the particle renders them incompetent for bioimaging of small organelles. Herein, we report, not only the synthesis of ultrasmall carbon containing magneto-fluorescent SPIONs with size ∼5 nm, but also demonstrate its capability as a multicolor imaging probe. Using MCF-7 and HeLa cell lines, we show that the SPIONs can provide high contrast mulicolor images of the cytoplasm from blue to red region. Further, single particle level photon count data revealed that the SPIONs could efficaciously be utilized in localization based super resolution microscopy in future.</p>\",\"PeriodicalId\":18855,\"journal\":{\"name\":\"Molecular Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1536012120969477\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/1536012120969477\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1536012120969477","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 1

摘要

虽然超顺磁性氧化铁纳米颗粒(SPIONs)已被广泛用作磁共振成像(MRI)的对比剂,但缺乏固有荧光限制了它们作为多模态探针的应用,特别是与光学显微镜结合使用时。此外,颗粒的较大尺寸使它们无法对小细胞器进行生物成像。在此,我们不仅合成了尺寸为~ 5 nm的含磁荧光SPIONs的超小碳,而且还证明了其作为多色成像探针的能力。使用MCF-7和HeLa细胞系,我们发现SPIONs可以提供高对比度的细胞质从蓝色到红色区域的多色图像。此外,单粒子级光子计数数据表明,SPIONs可以有效地用于基于定位的超分辨率显微镜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Magnetofluorescent Nanoprobe for Multimodal and Multicolor Bioimaging.

Magnetofluorescent Nanoprobe for Multimodal and Multicolor Bioimaging.

Magnetofluorescent Nanoprobe for Multimodal and Multicolor Bioimaging.

Magnetofluorescent Nanoprobe for Multimodal and Multicolor Bioimaging.

Although, superparamagnetic iron oxide nanoparticles (SPIONs) have extensively been used as a contrasting agent for magnetic resonance imaging (MRI), the lack of intrinsic fluorescence restricted their application as a multimodal probe, especially in combination with light microscopy. In Addition, the bigger size of the particle renders them incompetent for bioimaging of small organelles. Herein, we report, not only the synthesis of ultrasmall carbon containing magneto-fluorescent SPIONs with size ∼5 nm, but also demonstrate its capability as a multicolor imaging probe. Using MCF-7 and HeLa cell lines, we show that the SPIONs can provide high contrast mulicolor images of the cytoplasm from blue to red region. Further, single particle level photon count data revealed that the SPIONs could efficaciously be utilized in localization based super resolution microscopy in future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Imaging
Molecular Imaging Biochemistry, Genetics and Molecular Biology-Biotechnology
自引率
3.60%
发文量
21
期刊介绍: Molecular Imaging is a peer-reviewed, open access journal highlighting the breadth of molecular imaging research from basic science to preclinical studies to human applications. This serves both the scientific and clinical communities by disseminating novel results and concepts relevant to the biological study of normal and disease processes in both basic and translational studies ranging from mice to humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信