{"title":"褪黑素对人类卵巢功能的调节。","authors":"Seema Rai, Hindole Ghosh","doi":"10.2741/875","DOIUrl":null,"url":null,"abstract":"<p><p>Melatonin, a hormone which is primarily released by the pineal gland, has a wide range of actions in the female reproductive tract. While the melatonin receptor subtype, MT3, has been identified in amphibian animals and birds, in humans and other mammals, melatonin acts through, MT1 and MT2 receptor subtypes which are expressed in human ovaries. The rhythmic release of melatonin starts at puberty and continues throughout fertile female life, affecting and regulating diverse ovarian functions. Here, we discuss the importance of melatonin in regulating folliculogenesis, oocyte quality, ovulation and luteal function, sex steroid receptor gene expression, ovarian steroidogenesis including the production and steroidogenic enzyme activities in the egg and thecal cells. Melatonin improves the egg quality and increases the chance of success of in vitro fertilization (IVF). In view of such extensive actions, melatonin is central to the fertility in females. The objective of this review is to recapitulate the current understanding of the role of melatonin and its receptors.</p>","PeriodicalId":73068,"journal":{"name":"Frontiers in bioscience (Elite edition)","volume":"13 1","pages":"140-157"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Modulation of human ovarian function by melatonin.\",\"authors\":\"Seema Rai, Hindole Ghosh\",\"doi\":\"10.2741/875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Melatonin, a hormone which is primarily released by the pineal gland, has a wide range of actions in the female reproductive tract. While the melatonin receptor subtype, MT3, has been identified in amphibian animals and birds, in humans and other mammals, melatonin acts through, MT1 and MT2 receptor subtypes which are expressed in human ovaries. The rhythmic release of melatonin starts at puberty and continues throughout fertile female life, affecting and regulating diverse ovarian functions. Here, we discuss the importance of melatonin in regulating folliculogenesis, oocyte quality, ovulation and luteal function, sex steroid receptor gene expression, ovarian steroidogenesis including the production and steroidogenic enzyme activities in the egg and thecal cells. Melatonin improves the egg quality and increases the chance of success of in vitro fertilization (IVF). In view of such extensive actions, melatonin is central to the fertility in females. The objective of this review is to recapitulate the current understanding of the role of melatonin and its receptors.</p>\",\"PeriodicalId\":73068,\"journal\":{\"name\":\"Frontiers in bioscience (Elite edition)\",\"volume\":\"13 1\",\"pages\":\"140-157\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in bioscience (Elite edition)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2741/875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioscience (Elite edition)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2741/875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modulation of human ovarian function by melatonin.
Melatonin, a hormone which is primarily released by the pineal gland, has a wide range of actions in the female reproductive tract. While the melatonin receptor subtype, MT3, has been identified in amphibian animals and birds, in humans and other mammals, melatonin acts through, MT1 and MT2 receptor subtypes which are expressed in human ovaries. The rhythmic release of melatonin starts at puberty and continues throughout fertile female life, affecting and regulating diverse ovarian functions. Here, we discuss the importance of melatonin in regulating folliculogenesis, oocyte quality, ovulation and luteal function, sex steroid receptor gene expression, ovarian steroidogenesis including the production and steroidogenic enzyme activities in the egg and thecal cells. Melatonin improves the egg quality and increases the chance of success of in vitro fertilization (IVF). In view of such extensive actions, melatonin is central to the fertility in females. The objective of this review is to recapitulate the current understanding of the role of melatonin and its receptors.