通过联合方法揭示肿瘤表位免疫原性的关键参数提高新抗原预测。

IF 45.5 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Cell Pub Date : 2020-10-29 Epub Date: 2020-10-09 DOI:10.1016/j.cell.2020.09.015
Daniel K Wells, Marit M van Buuren, Kristen K Dang, Vanessa M Hubbard-Lucey, Kathleen C F Sheehan, Katie M Campbell, Andrew Lamb, Jeffrey P Ward, John Sidney, Ana B Blazquez, Andrew J Rech, Jesse M Zaretsky, Begonya Comin-Anduix, Alphonsus H C Ng, William Chour, Thomas V Yu, Hira Rizvi, Jia M Chen, Patrice Manning, Gabriela M Steiner, Xengie C Doan, Taha Merghoub, Justin Guinney, Adam Kolom, Cheryl Selinsky, Antoni Ribas, Matthew D Hellmann, Nir Hacohen, Alessandro Sette, James R Heath, Nina Bhardwaj, Fred Ramsdell, Robert D Schreiber, Ton N Schumacher, Pia Kvistborg, Nadine A Defranoux
{"title":"通过联合方法揭示肿瘤表位免疫原性的关键参数提高新抗原预测。","authors":"Daniel K Wells,&nbsp;Marit M van Buuren,&nbsp;Kristen K Dang,&nbsp;Vanessa M Hubbard-Lucey,&nbsp;Kathleen C F Sheehan,&nbsp;Katie M Campbell,&nbsp;Andrew Lamb,&nbsp;Jeffrey P Ward,&nbsp;John Sidney,&nbsp;Ana B Blazquez,&nbsp;Andrew J Rech,&nbsp;Jesse M Zaretsky,&nbsp;Begonya Comin-Anduix,&nbsp;Alphonsus H C Ng,&nbsp;William Chour,&nbsp;Thomas V Yu,&nbsp;Hira Rizvi,&nbsp;Jia M Chen,&nbsp;Patrice Manning,&nbsp;Gabriela M Steiner,&nbsp;Xengie C Doan,&nbsp;Taha Merghoub,&nbsp;Justin Guinney,&nbsp;Adam Kolom,&nbsp;Cheryl Selinsky,&nbsp;Antoni Ribas,&nbsp;Matthew D Hellmann,&nbsp;Nir Hacohen,&nbsp;Alessandro Sette,&nbsp;James R Heath,&nbsp;Nina Bhardwaj,&nbsp;Fred Ramsdell,&nbsp;Robert D Schreiber,&nbsp;Ton N Schumacher,&nbsp;Pia Kvistborg,&nbsp;Nadine A Defranoux","doi":"10.1016/j.cell.2020.09.015","DOIUrl":null,"url":null,"abstract":"<p><p>Many approaches to identify therapeutically relevant neoantigens couple tumor sequencing with bioinformatic algorithms and inferred rules of tumor epitope immunogenicity. However, there are no reference data to compare these approaches, and the parameters governing tumor epitope immunogenicity remain unclear. Here, we assembled a global consortium wherein each participant predicted immunogenic epitopes from shared tumor sequencing data. 608 epitopes were subsequently assessed for T cell binding in patient-matched samples. By integrating peptide features associated with presentation and recognition, we developed a model of tumor epitope immunogenicity that filtered out 98% of non-immunogenic peptides with a precision above 0.70. Pipelines prioritizing model features had superior performance, and pipeline alterations leveraging them improved prediction performance. These findings were validated in an independent cohort of 310 epitopes prioritized from tumor sequencing data and assessed for T cell binding. This data resource enables identification of parameters underlying effective anti-tumor immunity and is available to the research community.</p>","PeriodicalId":9656,"journal":{"name":"Cell","volume":" ","pages":"818-834.e13"},"PeriodicalIF":45.5000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.cell.2020.09.015","citationCount":"237","resultStr":"{\"title\":\"Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction.\",\"authors\":\"Daniel K Wells,&nbsp;Marit M van Buuren,&nbsp;Kristen K Dang,&nbsp;Vanessa M Hubbard-Lucey,&nbsp;Kathleen C F Sheehan,&nbsp;Katie M Campbell,&nbsp;Andrew Lamb,&nbsp;Jeffrey P Ward,&nbsp;John Sidney,&nbsp;Ana B Blazquez,&nbsp;Andrew J Rech,&nbsp;Jesse M Zaretsky,&nbsp;Begonya Comin-Anduix,&nbsp;Alphonsus H C Ng,&nbsp;William Chour,&nbsp;Thomas V Yu,&nbsp;Hira Rizvi,&nbsp;Jia M Chen,&nbsp;Patrice Manning,&nbsp;Gabriela M Steiner,&nbsp;Xengie C Doan,&nbsp;Taha Merghoub,&nbsp;Justin Guinney,&nbsp;Adam Kolom,&nbsp;Cheryl Selinsky,&nbsp;Antoni Ribas,&nbsp;Matthew D Hellmann,&nbsp;Nir Hacohen,&nbsp;Alessandro Sette,&nbsp;James R Heath,&nbsp;Nina Bhardwaj,&nbsp;Fred Ramsdell,&nbsp;Robert D Schreiber,&nbsp;Ton N Schumacher,&nbsp;Pia Kvistborg,&nbsp;Nadine A Defranoux\",\"doi\":\"10.1016/j.cell.2020.09.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many approaches to identify therapeutically relevant neoantigens couple tumor sequencing with bioinformatic algorithms and inferred rules of tumor epitope immunogenicity. However, there are no reference data to compare these approaches, and the parameters governing tumor epitope immunogenicity remain unclear. Here, we assembled a global consortium wherein each participant predicted immunogenic epitopes from shared tumor sequencing data. 608 epitopes were subsequently assessed for T cell binding in patient-matched samples. By integrating peptide features associated with presentation and recognition, we developed a model of tumor epitope immunogenicity that filtered out 98% of non-immunogenic peptides with a precision above 0.70. Pipelines prioritizing model features had superior performance, and pipeline alterations leveraging them improved prediction performance. These findings were validated in an independent cohort of 310 epitopes prioritized from tumor sequencing data and assessed for T cell binding. This data resource enables identification of parameters underlying effective anti-tumor immunity and is available to the research community.</p>\",\"PeriodicalId\":9656,\"journal\":{\"name\":\"Cell\",\"volume\":\" \",\"pages\":\"818-834.e13\"},\"PeriodicalIF\":45.5000,\"publicationDate\":\"2020-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.cell.2020.09.015\",\"citationCount\":\"237\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cell.2020.09.015\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/10/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cell.2020.09.015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/10/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 237

摘要

许多方法鉴定治疗相关的新抗原结合肿瘤测序与生物信息学算法和推断规则的肿瘤表位免疫原性。然而,没有参考数据来比较这些方法,并且控制肿瘤表位免疫原性的参数仍然不清楚。在这里,我们组建了一个全球联盟,其中每个参与者从共享的肿瘤测序数据预测免疫原性表位。随后评估608个表位在患者匹配样本中的T细胞结合。通过整合与呈现和识别相关的肽特征,我们开发了一个肿瘤表位免疫原性模型,该模型过滤了98%的非免疫原性肽,精度超过0.70。优先考虑模型特征的管道具有优越的性能,并且利用它们进行管道更改可以提高预测性能。这些发现在一个由肿瘤测序数据优先排序的310个表位组成的独立队列中得到了验证,并对T细胞结合进行了评估。该数据资源能够识别有效抗肿瘤免疫的基础参数,并可供研究界使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction.

Many approaches to identify therapeutically relevant neoantigens couple tumor sequencing with bioinformatic algorithms and inferred rules of tumor epitope immunogenicity. However, there are no reference data to compare these approaches, and the parameters governing tumor epitope immunogenicity remain unclear. Here, we assembled a global consortium wherein each participant predicted immunogenic epitopes from shared tumor sequencing data. 608 epitopes were subsequently assessed for T cell binding in patient-matched samples. By integrating peptide features associated with presentation and recognition, we developed a model of tumor epitope immunogenicity that filtered out 98% of non-immunogenic peptides with a precision above 0.70. Pipelines prioritizing model features had superior performance, and pipeline alterations leveraging them improved prediction performance. These findings were validated in an independent cohort of 310 epitopes prioritized from tumor sequencing data and assessed for T cell binding. This data resource enables identification of parameters underlying effective anti-tumor immunity and is available to the research community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell
Cell 生物-生化与分子生物学
CiteScore
110.00
自引率
0.80%
发文量
396
审稿时长
2 months
期刊介绍: Cells is an international, peer-reviewed, open access journal that focuses on cell biology, molecular biology, and biophysics. It is affiliated with several societies, including the Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH), and Society for Regenerative Medicine (Russian Federation) (RPO). The journal publishes research findings of significant importance in various areas of experimental biology, such as cell biology, molecular biology, neuroscience, immunology, virology, microbiology, cancer, human genetics, systems biology, signaling, and disease mechanisms and therapeutics. The primary criterion for considering papers is whether the results contribute to significant conceptual advances or raise thought-provoking questions and hypotheses related to interesting and important biological inquiries. In addition to primary research articles presented in four formats, Cells also features review and opinion articles in its "leading edge" section, discussing recent research advancements and topics of interest to its wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信