{"title":"利用从矢状叶黄索和刺叶黄索中获得的聚合物设计负载布洛芬的微球。","authors":"Tolulope Omolola Ajala, Boladale Olanrewaju Silva","doi":"10.17219/pim/122015","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ibuprofen is used both for acute and chronic disorders, such as ankylosing spondylitis, osteoarthritis and rheumatoid arthritis; however, ibuprofen causes gastrointestinal disturbances. Therefore, it would be desirable to design it as a sustained-release preparation.</p><p><strong>Objectives: </strong>To design ibuprofen microbeads using polymers obtained from Xanthosoma sagittifolium starch and Dillenia indica mucilage to provide sustained-release delivery of ibuprofen.</p><p><strong>Material and methods: </strong>The polymers were extracted using standard methods and characterized by their material, physicochemical, elemental, and rheological profiles. Microbeads loaded with ibuprofen were prepared using the ionotropic gelation method utilizing blends of the polymers and sodium alginate. The microbeads were evaluated using particle shape, particle size, swelling index, entrapment efficiency, and release assays.</p><p><strong>Results: </strong>The results showed that the polymers have distinct material and physicochemical properties unique to their botanical sources. The microbeads were spherical and free-flowing, and they rolled without friction. The swelling properties ranged from 47.62 ±2.74% to 79.49 ±3.66%. The particle size of the microbeads ranged from 88.14 ±68.57 μm to 214.90 ±66.95 μm, while the encapsulation efficiencies ranged from 20.67 ±4.66% to 83.61 ±6.35%. The dissolution times suggested that the concentration of the natural polymers in the bead formulation could be used to modulate the dissolution properties. Generally, formulations containing the mucilage yielded higher dissolution times than those containing the starch. The kinetics of drug release from the microbeads containing the polymer blends generally fitted the Korsmeyer-Peppas model. The highest similarity was found between formulations C6 and D4 with f2 of 81.07.</p><p><strong>Conclusions: </strong>The microbeads prepared with polymers obtained from Xanthosoma and Dillenia showed acceptable physicochemical properties, dependent upon polymer type, blend and concentration.</p>","PeriodicalId":20355,"journal":{"name":"Polimery w medycynie","volume":"50 1","pages":"21-31"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"The design of ibuprofen-loaded microbeads using polymers obtained from Xanthosoma sagittifolium and Dillenia indica.\",\"authors\":\"Tolulope Omolola Ajala, Boladale Olanrewaju Silva\",\"doi\":\"10.17219/pim/122015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ibuprofen is used both for acute and chronic disorders, such as ankylosing spondylitis, osteoarthritis and rheumatoid arthritis; however, ibuprofen causes gastrointestinal disturbances. Therefore, it would be desirable to design it as a sustained-release preparation.</p><p><strong>Objectives: </strong>To design ibuprofen microbeads using polymers obtained from Xanthosoma sagittifolium starch and Dillenia indica mucilage to provide sustained-release delivery of ibuprofen.</p><p><strong>Material and methods: </strong>The polymers were extracted using standard methods and characterized by their material, physicochemical, elemental, and rheological profiles. Microbeads loaded with ibuprofen were prepared using the ionotropic gelation method utilizing blends of the polymers and sodium alginate. The microbeads were evaluated using particle shape, particle size, swelling index, entrapment efficiency, and release assays.</p><p><strong>Results: </strong>The results showed that the polymers have distinct material and physicochemical properties unique to their botanical sources. The microbeads were spherical and free-flowing, and they rolled without friction. The swelling properties ranged from 47.62 ±2.74% to 79.49 ±3.66%. The particle size of the microbeads ranged from 88.14 ±68.57 μm to 214.90 ±66.95 μm, while the encapsulation efficiencies ranged from 20.67 ±4.66% to 83.61 ±6.35%. The dissolution times suggested that the concentration of the natural polymers in the bead formulation could be used to modulate the dissolution properties. Generally, formulations containing the mucilage yielded higher dissolution times than those containing the starch. The kinetics of drug release from the microbeads containing the polymer blends generally fitted the Korsmeyer-Peppas model. The highest similarity was found between formulations C6 and D4 with f2 of 81.07.</p><p><strong>Conclusions: </strong>The microbeads prepared with polymers obtained from Xanthosoma and Dillenia showed acceptable physicochemical properties, dependent upon polymer type, blend and concentration.</p>\",\"PeriodicalId\":20355,\"journal\":{\"name\":\"Polimery w medycynie\",\"volume\":\"50 1\",\"pages\":\"21-31\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polimery w medycynie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17219/pim/122015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polimery w medycynie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17219/pim/122015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
The design of ibuprofen-loaded microbeads using polymers obtained from Xanthosoma sagittifolium and Dillenia indica.
Background: Ibuprofen is used both for acute and chronic disorders, such as ankylosing spondylitis, osteoarthritis and rheumatoid arthritis; however, ibuprofen causes gastrointestinal disturbances. Therefore, it would be desirable to design it as a sustained-release preparation.
Objectives: To design ibuprofen microbeads using polymers obtained from Xanthosoma sagittifolium starch and Dillenia indica mucilage to provide sustained-release delivery of ibuprofen.
Material and methods: The polymers were extracted using standard methods and characterized by their material, physicochemical, elemental, and rheological profiles. Microbeads loaded with ibuprofen were prepared using the ionotropic gelation method utilizing blends of the polymers and sodium alginate. The microbeads were evaluated using particle shape, particle size, swelling index, entrapment efficiency, and release assays.
Results: The results showed that the polymers have distinct material and physicochemical properties unique to their botanical sources. The microbeads were spherical and free-flowing, and they rolled without friction. The swelling properties ranged from 47.62 ±2.74% to 79.49 ±3.66%. The particle size of the microbeads ranged from 88.14 ±68.57 μm to 214.90 ±66.95 μm, while the encapsulation efficiencies ranged from 20.67 ±4.66% to 83.61 ±6.35%. The dissolution times suggested that the concentration of the natural polymers in the bead formulation could be used to modulate the dissolution properties. Generally, formulations containing the mucilage yielded higher dissolution times than those containing the starch. The kinetics of drug release from the microbeads containing the polymer blends generally fitted the Korsmeyer-Peppas model. The highest similarity was found between formulations C6 and D4 with f2 of 81.07.
Conclusions: The microbeads prepared with polymers obtained from Xanthosoma and Dillenia showed acceptable physicochemical properties, dependent upon polymer type, blend and concentration.