Casper J van der Kooi, Doekele G Stavenga, Kentaro Arikawa, Gregor Belušič, Almut Kelber
{"title":"昆虫色觉的进化:从光谱敏感性到视觉生态学。","authors":"Casper J van der Kooi, Doekele G Stavenga, Kentaro Arikawa, Gregor Belušič, Almut Kelber","doi":"10.1146/annurev-ento-061720-071644","DOIUrl":null,"url":null,"abstract":"<p><p>Color vision is widespread among insects but varies among species, depending on the spectral sensitivities and interplay of the participating photoreceptors. The spectral sensitivity of a photoreceptor is principally determined by the absorption spectrum of the expressed visual pigment, but it can be modified by various optical and electrophysiological factors. For example, screening and filtering pigments, rhabdom waveguide properties, retinal structure, and neural processing all influence the perceived color signal. We review the diversity in compound eye structure, visual pigments, photoreceptor physiology, and visual ecology of insects. Based on an overview of the current information about the spectral sensitivities of insect photoreceptors, covering 221 species in 13 insect orders, we discuss the evolution of color vision and highlight present knowledge gaps and promising future research directions in the field.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":"66 ","pages":"435-461"},"PeriodicalIF":15.0000,"publicationDate":"2021-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-ento-061720-071644","citationCount":"150","resultStr":"{\"title\":\"Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology.\",\"authors\":\"Casper J van der Kooi, Doekele G Stavenga, Kentaro Arikawa, Gregor Belušič, Almut Kelber\",\"doi\":\"10.1146/annurev-ento-061720-071644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Color vision is widespread among insects but varies among species, depending on the spectral sensitivities and interplay of the participating photoreceptors. The spectral sensitivity of a photoreceptor is principally determined by the absorption spectrum of the expressed visual pigment, but it can be modified by various optical and electrophysiological factors. For example, screening and filtering pigments, rhabdom waveguide properties, retinal structure, and neural processing all influence the perceived color signal. We review the diversity in compound eye structure, visual pigments, photoreceptor physiology, and visual ecology of insects. Based on an overview of the current information about the spectral sensitivities of insect photoreceptors, covering 221 species in 13 insect orders, we discuss the evolution of color vision and highlight present knowledge gaps and promising future research directions in the field.</p>\",\"PeriodicalId\":8001,\"journal\":{\"name\":\"Annual review of entomology\",\"volume\":\"66 \",\"pages\":\"435-461\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2021-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-ento-061720-071644\",\"citationCount\":\"150\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-ento-061720-071644\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-ento-061720-071644","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology.
Color vision is widespread among insects but varies among species, depending on the spectral sensitivities and interplay of the participating photoreceptors. The spectral sensitivity of a photoreceptor is principally determined by the absorption spectrum of the expressed visual pigment, but it can be modified by various optical and electrophysiological factors. For example, screening and filtering pigments, rhabdom waveguide properties, retinal structure, and neural processing all influence the perceived color signal. We review the diversity in compound eye structure, visual pigments, photoreceptor physiology, and visual ecology of insects. Based on an overview of the current information about the spectral sensitivities of insect photoreceptors, covering 221 species in 13 insect orders, we discuss the evolution of color vision and highlight present knowledge gaps and promising future research directions in the field.
期刊介绍:
The Annual Review of Entomology, a publication dating back to 1956, offers comprehensive reviews of significant developments in the field of entomology.The scope of coverage spans various areas, including:biochemistry and physiology, morphology and development, behavior and neuroscience, ecology, agricultural entomology and pest management, biological control, forest entomology, acarines and other arthropods, medical and veterinary entomology, pathology, vectors of plant disease, genetics, genomics, and systematics, evolution, and biogeography.