肿瘤HER2成像的肽基显像剂。

IF 2.2 4区 医学 Q3 BIOCHEMICAL RESEARCH METHODS
Maxwell Ducharme, Suzanne E Lapi
{"title":"肿瘤HER2成像的肽基显像剂。","authors":"Maxwell Ducharme,&nbsp;Suzanne E Lapi","doi":"10.1177/1536012120960258","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer continues to be the most lethal cancer type in women and one of the most diagnosed. Understanding Breast cancer receptor status is one of the most vital processes for determining treatment options. One type of breast cancer, human epidermal growth factor receptor 2 (HER2) positive, has approved receptor-based therapies including trastuzumab and pertuzumab that can significantly increase the likelihood of survival. Current methods to determine HER2 status include biopsies with immunohistochemical staining and/or fluorescence in situ hybridization. However, positron emission tomography (PET) imaging techniques using <sup>89</sup>Zr-trastuzumab or <sup>89</sup>Zr-pertuzumab are currently in clinical trials for a non-invasive, full body diagnostic approach. Although the antibodies have strong specificity to the HER2 positive lesions, challenges involving long post-injection time for imaging due to the blood circulation of the antibodies and matching of long-live isotopes leading to increased dose to the patient leave opportunities for alternative PET imaging probes. Peptides have been shown to allow for shorter injection-to-imaging time and can be used with shorter lived isotopes. HER2 specific peptides under development will help improve the diagnosis and potentially therapy options for HER2 positive breast cancer. Peptides showing specificity for HER2 could start widespread development of molecular imaging techniques for HER2 positive cancers.</p>","PeriodicalId":18855,"journal":{"name":"Molecular Imaging","volume":"19 ","pages":"1536012120960258"},"PeriodicalIF":2.2000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1536012120960258","citationCount":"8","resultStr":"{\"title\":\"Peptide Based Imaging Agents for HER2 Imaging in Oncology.\",\"authors\":\"Maxwell Ducharme,&nbsp;Suzanne E Lapi\",\"doi\":\"10.1177/1536012120960258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer continues to be the most lethal cancer type in women and one of the most diagnosed. Understanding Breast cancer receptor status is one of the most vital processes for determining treatment options. One type of breast cancer, human epidermal growth factor receptor 2 (HER2) positive, has approved receptor-based therapies including trastuzumab and pertuzumab that can significantly increase the likelihood of survival. Current methods to determine HER2 status include biopsies with immunohistochemical staining and/or fluorescence in situ hybridization. However, positron emission tomography (PET) imaging techniques using <sup>89</sup>Zr-trastuzumab or <sup>89</sup>Zr-pertuzumab are currently in clinical trials for a non-invasive, full body diagnostic approach. Although the antibodies have strong specificity to the HER2 positive lesions, challenges involving long post-injection time for imaging due to the blood circulation of the antibodies and matching of long-live isotopes leading to increased dose to the patient leave opportunities for alternative PET imaging probes. Peptides have been shown to allow for shorter injection-to-imaging time and can be used with shorter lived isotopes. HER2 specific peptides under development will help improve the diagnosis and potentially therapy options for HER2 positive breast cancer. Peptides showing specificity for HER2 could start widespread development of molecular imaging techniques for HER2 positive cancers.</p>\",\"PeriodicalId\":18855,\"journal\":{\"name\":\"Molecular Imaging\",\"volume\":\"19 \",\"pages\":\"1536012120960258\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1536012120960258\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/1536012120960258\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1536012120960258","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 8

摘要

乳腺癌仍然是女性中最致命的癌症类型,也是诊断最多的癌症之一。了解乳腺癌受体状态是确定治疗方案的最重要的过程之一。人类表皮生长因子受体2 (HER2)阳性的一种乳腺癌已经批准了基于受体的治疗,包括曲妥珠单抗和帕妥珠单抗,可以显着提高生存的可能性。目前确定HER2状态的方法包括免疫组织化学染色和/或荧光原位杂交活检。然而,使用89zr -曲妥珠单抗或89zr -帕妥珠单抗的正电子发射断层扫描(PET)成像技术目前正处于非侵入性全身诊断方法的临床试验中。尽管抗体对HER2阳性病变具有很强的特异性,但由于抗体的血液循环和长寿命同位素匹配导致患者剂量增加,注射后成像时间较长,这给替代PET成像探针留下了机会。多肽已被证明可以缩短注射到成像的时间,并且可以与寿命较短的同位素一起使用。正在开发的HER2特异性肽将有助于改善HER2阳性乳腺癌的诊断和潜在的治疗选择。显示HER2特异性的肽可以启动HER2阳性癌症分子成像技术的广泛发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Peptide Based Imaging Agents for HER2 Imaging in Oncology.

Peptide Based Imaging Agents for HER2 Imaging in Oncology.

Peptide Based Imaging Agents for HER2 Imaging in Oncology.

Peptide Based Imaging Agents for HER2 Imaging in Oncology.

Breast cancer continues to be the most lethal cancer type in women and one of the most diagnosed. Understanding Breast cancer receptor status is one of the most vital processes for determining treatment options. One type of breast cancer, human epidermal growth factor receptor 2 (HER2) positive, has approved receptor-based therapies including trastuzumab and pertuzumab that can significantly increase the likelihood of survival. Current methods to determine HER2 status include biopsies with immunohistochemical staining and/or fluorescence in situ hybridization. However, positron emission tomography (PET) imaging techniques using 89Zr-trastuzumab or 89Zr-pertuzumab are currently in clinical trials for a non-invasive, full body diagnostic approach. Although the antibodies have strong specificity to the HER2 positive lesions, challenges involving long post-injection time for imaging due to the blood circulation of the antibodies and matching of long-live isotopes leading to increased dose to the patient leave opportunities for alternative PET imaging probes. Peptides have been shown to allow for shorter injection-to-imaging time and can be used with shorter lived isotopes. HER2 specific peptides under development will help improve the diagnosis and potentially therapy options for HER2 positive breast cancer. Peptides showing specificity for HER2 could start widespread development of molecular imaging techniques for HER2 positive cancers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Imaging
Molecular Imaging Biochemistry, Genetics and Molecular Biology-Biotechnology
自引率
3.60%
发文量
21
期刊介绍: Molecular Imaging is a peer-reviewed, open access journal highlighting the breadth of molecular imaging research from basic science to preclinical studies to human applications. This serves both the scientific and clinical communities by disseminating novel results and concepts relevant to the biological study of normal and disease processes in both basic and translational studies ranging from mice to humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信