{"title":"场逐步扫描的QCPMG固态115In氧化铟核磁共振","authors":"Kazuhiko Yamada , Takumi Yamaguchi , Ryutaro Ohashi , Shinobu Ohki , Kenzo Deguchi , Kenjiro Hashi , Atsushi Goto , Tadashi Shimizu","doi":"10.1016/j.ssnmr.2020.101688","DOIUrl":null,"url":null,"abstract":"<div><p>Experimental and theoretical investigations of indium-115 electric-field-gradient (EFG) tensors of indium(III) oxide, In<sub>2</sub>O<sub>3</sub>, have been presented. Field-stepwise-swept QCPMG solid-state <sup>115</sup>In NMR experiments are carried out at <em>T</em><span> = 120 K, observed at 52.695 MHz, and in the range of external magnetic fields between 4.0 and 6.5 T. The spectral simulations yield the quadrupolar coupling constant, </span><em>C</em><sub>Q</sub> value, of 183(2) MHz and the asymmetry parameter, η<sub>Q</sub>, of 0.05(5), for In(1), and that of 126(2) MHz and η<sub>Q</sub><span> of 0.86(5) for In(2). Quantum chemical calculations are carried out to provide </span><sup>115</sup>In EFG tensor orientations with respect to the molecular structure. A relationship between operative frequencies and variable ranges of external magnetic fields is briefly discussed for field-swept solid-state <sup>115</sup>In NMR.</p></div>","PeriodicalId":21937,"journal":{"name":"Solid state nuclear magnetic resonance","volume":"109 ","pages":"Article 101688"},"PeriodicalIF":1.8000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101688","citationCount":"2","resultStr":"{\"title\":\"Field-stepwise-swept QCPMG solid-state 115In NMR of indium oxide\",\"authors\":\"Kazuhiko Yamada , Takumi Yamaguchi , Ryutaro Ohashi , Shinobu Ohki , Kenzo Deguchi , Kenjiro Hashi , Atsushi Goto , Tadashi Shimizu\",\"doi\":\"10.1016/j.ssnmr.2020.101688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Experimental and theoretical investigations of indium-115 electric-field-gradient (EFG) tensors of indium(III) oxide, In<sub>2</sub>O<sub>3</sub>, have been presented. Field-stepwise-swept QCPMG solid-state <sup>115</sup>In NMR experiments are carried out at <em>T</em><span> = 120 K, observed at 52.695 MHz, and in the range of external magnetic fields between 4.0 and 6.5 T. The spectral simulations yield the quadrupolar coupling constant, </span><em>C</em><sub>Q</sub> value, of 183(2) MHz and the asymmetry parameter, η<sub>Q</sub>, of 0.05(5), for In(1), and that of 126(2) MHz and η<sub>Q</sub><span> of 0.86(5) for In(2). Quantum chemical calculations are carried out to provide </span><sup>115</sup>In EFG tensor orientations with respect to the molecular structure. A relationship between operative frequencies and variable ranges of external magnetic fields is briefly discussed for field-swept solid-state <sup>115</sup>In NMR.</p></div>\",\"PeriodicalId\":21937,\"journal\":{\"name\":\"Solid state nuclear magnetic resonance\",\"volume\":\"109 \",\"pages\":\"Article 101688\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ssnmr.2020.101688\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid state nuclear magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926204020300503\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid state nuclear magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926204020300503","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Field-stepwise-swept QCPMG solid-state 115In NMR of indium oxide
Experimental and theoretical investigations of indium-115 electric-field-gradient (EFG) tensors of indium(III) oxide, In2O3, have been presented. Field-stepwise-swept QCPMG solid-state 115In NMR experiments are carried out at T = 120 K, observed at 52.695 MHz, and in the range of external magnetic fields between 4.0 and 6.5 T. The spectral simulations yield the quadrupolar coupling constant, CQ value, of 183(2) MHz and the asymmetry parameter, ηQ, of 0.05(5), for In(1), and that of 126(2) MHz and ηQ of 0.86(5) for In(2). Quantum chemical calculations are carried out to provide 115In EFG tensor orientations with respect to the molecular structure. A relationship between operative frequencies and variable ranges of external magnetic fields is briefly discussed for field-swept solid-state 115In NMR.
期刊介绍:
The journal Solid State Nuclear Magnetic Resonance publishes original manuscripts of high scientific quality dealing with all experimental and theoretical aspects of solid state NMR. This includes advances in instrumentation, development of new experimental techniques and methodology, new theoretical insights, new data processing and simulation methods, and original applications of established or novel methods to scientific problems.