除草剂暴露及其对水生初级生产者的毒性。

IF 6.1 3区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
J Arie Vonk, Michiel H S Kraak
{"title":"除草剂暴露及其对水生初级生产者的毒性。","authors":"J Arie Vonk,&nbsp;Michiel H S Kraak","doi":"10.1007/398_2020_48","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of the present review was to give an overview of the current state of science concerning herbicide exposure and toxicity to aquatic primary producers. To this end we assessed the open literature, revealing the widespread presence of (mixtures of) herbicides, inevitably leading to the exposure of non-target primary producers. Yet, herbicide concentrations show strong temporal and spatial variations. Concerning herbicide toxicity, it was concluded that the most sensitive as well as the least sensitive species differed per herbicide and that the observed effect concentrations for some herbicides were rather independent from the exposure time. More extensive ecotoxicity testing is required, especially considering macrophytes and marine herbicide toxicity. Hence, it was concluded that the largest knowledge gap concerns the effects of sediment-associated herbicides on primary producers in the marine/estuarine environment. Generally, there is no actual risk of waterborne herbicides to aquatic primary producers. Still, median concentrations of atrazine and especially of diuron measured in China, the USA and Europe represented moderate risks for primary producers. Maximum concentrations due to misuse and accidents may even cause the exceedance of almost 60% of the effect concentrations plotted in SSDs. Using bioassays to determine the effect of contaminated water and sediment and to identify the herbicides of concern is a promising addition to chemical analysis, especially for the photosynthesis-inhibiting herbicides using photosynthesis as endpoint in the bioassays. This review concluded that to come to a reliable herbicide hazard and risk assessment, an extensive catch-up must be made concerning macrophytes, the marine environment and especially sediment as overlooked and understudied environmental compartments.</p>","PeriodicalId":21182,"journal":{"name":"Reviews of environmental contamination and toxicology","volume":"250 ","pages":"119-171"},"PeriodicalIF":6.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/398_2020_48","citationCount":"21","resultStr":"{\"title\":\"Herbicide Exposure and Toxicity to Aquatic Primary Producers.\",\"authors\":\"J Arie Vonk,&nbsp;Michiel H S Kraak\",\"doi\":\"10.1007/398_2020_48\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The aim of the present review was to give an overview of the current state of science concerning herbicide exposure and toxicity to aquatic primary producers. To this end we assessed the open literature, revealing the widespread presence of (mixtures of) herbicides, inevitably leading to the exposure of non-target primary producers. Yet, herbicide concentrations show strong temporal and spatial variations. Concerning herbicide toxicity, it was concluded that the most sensitive as well as the least sensitive species differed per herbicide and that the observed effect concentrations for some herbicides were rather independent from the exposure time. More extensive ecotoxicity testing is required, especially considering macrophytes and marine herbicide toxicity. Hence, it was concluded that the largest knowledge gap concerns the effects of sediment-associated herbicides on primary producers in the marine/estuarine environment. Generally, there is no actual risk of waterborne herbicides to aquatic primary producers. Still, median concentrations of atrazine and especially of diuron measured in China, the USA and Europe represented moderate risks for primary producers. Maximum concentrations due to misuse and accidents may even cause the exceedance of almost 60% of the effect concentrations plotted in SSDs. Using bioassays to determine the effect of contaminated water and sediment and to identify the herbicides of concern is a promising addition to chemical analysis, especially for the photosynthesis-inhibiting herbicides using photosynthesis as endpoint in the bioassays. This review concluded that to come to a reliable herbicide hazard and risk assessment, an extensive catch-up must be made concerning macrophytes, the marine environment and especially sediment as overlooked and understudied environmental compartments.</p>\",\"PeriodicalId\":21182,\"journal\":{\"name\":\"Reviews of environmental contamination and toxicology\",\"volume\":\"250 \",\"pages\":\"119-171\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/398_2020_48\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of environmental contamination and toxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/398_2020_48\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of environmental contamination and toxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/398_2020_48","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 21

摘要

本综述的目的是概述有关除草剂暴露和对水生初级生产者的毒性的科学现状。为此,我们评估了公开文献,揭示了除草剂(混合物)的广泛存在,不可避免地导致非目标初级生产者的暴露。然而,除草剂浓度表现出强烈的时空变化。在除草剂毒性方面,不同除草剂的最敏感种和最不敏感种不同,某些除草剂的效应浓度与暴露时间无关。需要更广泛的生态毒性测试,特别是考虑到大型植物和海洋除草剂的毒性。因此,得出的结论是,最大的知识差距涉及与沉积物有关的除草剂对海洋/河口环境中初级生产者的影响。一般来说,水性除草剂对水生初级生产者没有实际的风险。尽管如此,在中国、美国和欧洲测量的阿特拉津,特别是迪乌伦的中位数浓度对初级生产者来说代表着中等风险。由于误用和意外造成的最大浓度甚至可能导致超过固态硬盘中所示影响浓度的近60%。利用生物测定法来确定受污染的水和沉积物的影响,以及识别受关注的除草剂是化学分析的一个有前途的补充,特别是在生物测定中以光合作用为终点的抑制光合作用的除草剂。本文认为,为了得出可靠的除草剂危害和风险评价,必须对大型植物、海洋环境,特别是沉积物等被忽视和研究不足的环境区域进行广泛的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Herbicide Exposure and Toxicity to Aquatic Primary Producers.

The aim of the present review was to give an overview of the current state of science concerning herbicide exposure and toxicity to aquatic primary producers. To this end we assessed the open literature, revealing the widespread presence of (mixtures of) herbicides, inevitably leading to the exposure of non-target primary producers. Yet, herbicide concentrations show strong temporal and spatial variations. Concerning herbicide toxicity, it was concluded that the most sensitive as well as the least sensitive species differed per herbicide and that the observed effect concentrations for some herbicides were rather independent from the exposure time. More extensive ecotoxicity testing is required, especially considering macrophytes and marine herbicide toxicity. Hence, it was concluded that the largest knowledge gap concerns the effects of sediment-associated herbicides on primary producers in the marine/estuarine environment. Generally, there is no actual risk of waterborne herbicides to aquatic primary producers. Still, median concentrations of atrazine and especially of diuron measured in China, the USA and Europe represented moderate risks for primary producers. Maximum concentrations due to misuse and accidents may even cause the exceedance of almost 60% of the effect concentrations plotted in SSDs. Using bioassays to determine the effect of contaminated water and sediment and to identify the herbicides of concern is a promising addition to chemical analysis, especially for the photosynthesis-inhibiting herbicides using photosynthesis as endpoint in the bioassays. This review concluded that to come to a reliable herbicide hazard and risk assessment, an extensive catch-up must be made concerning macrophytes, the marine environment and especially sediment as overlooked and understudied environmental compartments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.80
自引率
0.00%
发文量
11
审稿时长
>24 weeks
期刊介绍: Reviews of Environmental Contamination and Toxicology publishes reviews pertaining to the sources, transport, fate and effects of contaminants in the environment. The journal provides a place for the publication of critical reviews of the current knowledge and understanding of environmental sciences in order to provide insight into contaminant pathways, fate and behavior in environmental compartments and the possible consequences of their presence, with multidisciplinary contributions from the fields of analytical chemistry, biochemistry, biology, ecology, molecular and cellular biology (in an environmental context), and human, wildlife and environmental toxicology. •Standing on a 55+ year history of publishing environmental toxicology reviews •Now publishing in journal format boasting rigorous review and expanded editorial board •Publishing home for extensive environmental reviews dealing with sources, transport, fate and effect of contaminants •Through Springer Compact agreements, authors from participating institutions can publish Open Choice at no cost to the authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信