{"title":"具有自适应状态依赖延迟的Kuramoto白质网络模型的同步和弹性。","authors":"Seong Hyun Park, Jérémie Lefebvre","doi":"10.1186/s13408-020-00091-y","DOIUrl":null,"url":null,"abstract":"<p><p>White matter pathways form a complex network of myelinated axons that regulate signal transmission in the nervous system and play a key role in behaviour and cognition. Recent evidence reveals that white matter networks are adaptive and that myelin remodels itself in an activity-dependent way, during both developmental stages and later on through behaviour and learning. As a result, axonal conduction delays continuously adjust in order to regulate the timing of neural signals propagating between different brain areas. This delay plasticity mechanism has yet to be integrated in computational neural models, where conduction delays are oftentimes constant or simply ignored. As a first approach to adaptive white matter remodeling, we modified the canonical Kuramoto model by enabling all connections with adaptive, phase-dependent delays. We analyzed the equilibria and stability of this system, and applied our results to two-oscillator and large-dimensional networks. Our joint mathematical and numerical analysis demonstrates that plastic delays act as a stabilizing mechanism promoting the network's ability to maintain synchronous activity. Our work also shows that global synchronization is more resilient to perturbations and injury towards network architecture. Our results provide key insights about the analysis and potential significance of activity-dependent myelination in large-scale brain synchrony.</p>","PeriodicalId":54271,"journal":{"name":"Journal of Mathematical Neuroscience","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13408-020-00091-y","citationCount":"4","resultStr":"{\"title\":\"Synchronization and resilience in the Kuramoto white matter network model with adaptive state-dependent delays.\",\"authors\":\"Seong Hyun Park, Jérémie Lefebvre\",\"doi\":\"10.1186/s13408-020-00091-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>White matter pathways form a complex network of myelinated axons that regulate signal transmission in the nervous system and play a key role in behaviour and cognition. Recent evidence reveals that white matter networks are adaptive and that myelin remodels itself in an activity-dependent way, during both developmental stages and later on through behaviour and learning. As a result, axonal conduction delays continuously adjust in order to regulate the timing of neural signals propagating between different brain areas. This delay plasticity mechanism has yet to be integrated in computational neural models, where conduction delays are oftentimes constant or simply ignored. As a first approach to adaptive white matter remodeling, we modified the canonical Kuramoto model by enabling all connections with adaptive, phase-dependent delays. We analyzed the equilibria and stability of this system, and applied our results to two-oscillator and large-dimensional networks. Our joint mathematical and numerical analysis demonstrates that plastic delays act as a stabilizing mechanism promoting the network's ability to maintain synchronous activity. Our work also shows that global synchronization is more resilient to perturbations and injury towards network architecture. Our results provide key insights about the analysis and potential significance of activity-dependent myelination in large-scale brain synchrony.</p>\",\"PeriodicalId\":54271,\"journal\":{\"name\":\"Journal of Mathematical Neuroscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2020-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13408-020-00091-y\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13408-020-00091-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13408-020-00091-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Neuroscience","Score":null,"Total":0}
Synchronization and resilience in the Kuramoto white matter network model with adaptive state-dependent delays.
White matter pathways form a complex network of myelinated axons that regulate signal transmission in the nervous system and play a key role in behaviour and cognition. Recent evidence reveals that white matter networks are adaptive and that myelin remodels itself in an activity-dependent way, during both developmental stages and later on through behaviour and learning. As a result, axonal conduction delays continuously adjust in order to regulate the timing of neural signals propagating between different brain areas. This delay plasticity mechanism has yet to be integrated in computational neural models, where conduction delays are oftentimes constant or simply ignored. As a first approach to adaptive white matter remodeling, we modified the canonical Kuramoto model by enabling all connections with adaptive, phase-dependent delays. We analyzed the equilibria and stability of this system, and applied our results to two-oscillator and large-dimensional networks. Our joint mathematical and numerical analysis demonstrates that plastic delays act as a stabilizing mechanism promoting the network's ability to maintain synchronous activity. Our work also shows that global synchronization is more resilient to perturbations and injury towards network architecture. Our results provide key insights about the analysis and potential significance of activity-dependent myelination in large-scale brain synchrony.
期刊介绍:
The Journal of Mathematical Neuroscience (JMN) publishes research articles on the mathematical modeling and analysis of all areas of neuroscience, i.e., the study of the nervous system and its dysfunctions. The focus is on using mathematics as the primary tool for elucidating the fundamental mechanisms responsible for experimentally observed behaviours in neuroscience at all relevant scales, from the molecular world to that of cognition. The aim is to publish work that uses advanced mathematical techniques to illuminate these questions.
It publishes full length original papers, rapid communications and review articles. Papers that combine theoretical results supported by convincing numerical experiments are especially encouraged.
Papers that introduce and help develop those new pieces of mathematical theory which are likely to be relevant to future studies of the nervous system in general and the human brain in particular are also welcome.