{"title":"核磁共振引导的聚焦超声诱导血脑屏障破坏将神经胶质细胞系衍生的神经营养因子蛋白输送到脑内治疗大鼠抑郁症。","authors":"Feng Wang, Nana Li, Xixi Wei, Xiaojian Jia, Huanhuan Liu, Yongling Wang, Yu Shi, Min Pan, Yue Wang, Yaling Yin, Fei Yan, Yun Chen","doi":"10.1166/jbn.2020.2914","DOIUrl":null,"url":null,"abstract":"<p><p>Glial cell line derived neurotropic factor (GDNF) plays a crucial role in the development and maintenance of glial cells, serotonergic and dopaminergic neurons. A positively therapeutic effect has been demonstrated on some animal neurodegenerative diseases. However, the inability to deliver the protein across blood brain barrier (BBB) into damaged brain region limits its clinical application. Here, we developed GDNF-loaded microbubbles (MBs) and achieved a local and precise delivery of GDNF into the brain through MRI-guided focused ultrasound-induced BBB disruption. To demonstrate the therapeutic effect, rat depression model was developed by chronic mild stress treatment. Typical depression behaviors were confirmed. MRI-guided focused ultrasound was used to irradiate the GDNF-loaded MBs. Obvious BBB opening was observed in the treated rat brains and a significant higher GDNF concentration was detected in the ultrasound-treated brain tissues. Behavioral tests demonstrated the increased GDNF could reverse the depressive-like behaviors induced by chronic mild stress, improve the expression of 5-HT 1B receptor and the protein p11, and increase the number of 5-HT or TPH2 immunoreactive neurons. In conclusion, our study provided an effective approach to deliver GDNF proteins into brain to treat rat depression through MRI-guided focused ultrasound-induced destruction of blood-brain barrier.</p>","PeriodicalId":15260,"journal":{"name":"Journal of biomedical nanotechnology","volume":"16 5","pages":"626-639"},"PeriodicalIF":2.9000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"MRI-Guided Focused Ultrasound-Induced Blood Brain Barrier Disruption to Deliver Glial Cell Line Derived Neurotropic Factor Proteins into Brain to Treat Rat Depression.\",\"authors\":\"Feng Wang, Nana Li, Xixi Wei, Xiaojian Jia, Huanhuan Liu, Yongling Wang, Yu Shi, Min Pan, Yue Wang, Yaling Yin, Fei Yan, Yun Chen\",\"doi\":\"10.1166/jbn.2020.2914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glial cell line derived neurotropic factor (GDNF) plays a crucial role in the development and maintenance of glial cells, serotonergic and dopaminergic neurons. A positively therapeutic effect has been demonstrated on some animal neurodegenerative diseases. However, the inability to deliver the protein across blood brain barrier (BBB) into damaged brain region limits its clinical application. Here, we developed GDNF-loaded microbubbles (MBs) and achieved a local and precise delivery of GDNF into the brain through MRI-guided focused ultrasound-induced BBB disruption. To demonstrate the therapeutic effect, rat depression model was developed by chronic mild stress treatment. Typical depression behaviors were confirmed. MRI-guided focused ultrasound was used to irradiate the GDNF-loaded MBs. Obvious BBB opening was observed in the treated rat brains and a significant higher GDNF concentration was detected in the ultrasound-treated brain tissues. Behavioral tests demonstrated the increased GDNF could reverse the depressive-like behaviors induced by chronic mild stress, improve the expression of 5-HT 1B receptor and the protein p11, and increase the number of 5-HT or TPH2 immunoreactive neurons. In conclusion, our study provided an effective approach to deliver GDNF proteins into brain to treat rat depression through MRI-guided focused ultrasound-induced destruction of blood-brain barrier.</p>\",\"PeriodicalId\":15260,\"journal\":{\"name\":\"Journal of biomedical nanotechnology\",\"volume\":\"16 5\",\"pages\":\"626-639\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1166/jbn.2020.2914\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1166/jbn.2020.2914","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
MRI-Guided Focused Ultrasound-Induced Blood Brain Barrier Disruption to Deliver Glial Cell Line Derived Neurotropic Factor Proteins into Brain to Treat Rat Depression.
Glial cell line derived neurotropic factor (GDNF) plays a crucial role in the development and maintenance of glial cells, serotonergic and dopaminergic neurons. A positively therapeutic effect has been demonstrated on some animal neurodegenerative diseases. However, the inability to deliver the protein across blood brain barrier (BBB) into damaged brain region limits its clinical application. Here, we developed GDNF-loaded microbubbles (MBs) and achieved a local and precise delivery of GDNF into the brain through MRI-guided focused ultrasound-induced BBB disruption. To demonstrate the therapeutic effect, rat depression model was developed by chronic mild stress treatment. Typical depression behaviors were confirmed. MRI-guided focused ultrasound was used to irradiate the GDNF-loaded MBs. Obvious BBB opening was observed in the treated rat brains and a significant higher GDNF concentration was detected in the ultrasound-treated brain tissues. Behavioral tests demonstrated the increased GDNF could reverse the depressive-like behaviors induced by chronic mild stress, improve the expression of 5-HT 1B receptor and the protein p11, and increase the number of 5-HT or TPH2 immunoreactive neurons. In conclusion, our study provided an effective approach to deliver GDNF proteins into brain to treat rat depression through MRI-guided focused ultrasound-induced destruction of blood-brain barrier.