Jiayun Fu, Bin Zhu, Weiwei Cui, Song Ge, Yun Wang, Haidong Zhang, He Huang, Yuanyuan Tang, Dongmei Zhang, Xiaojing Ma
{"title":"图表:恢复图表图像与数据嵌入。","authors":"Jiayun Fu, Bin Zhu, Weiwei Cui, Song Ge, Yun Wang, Haidong Zhang, He Huang, Yuanyuan Tang, Dongmei Zhang, Xiaojing Ma","doi":"10.1109/TVCG.2020.3030351","DOIUrl":null,"url":null,"abstract":"<p><p>In practice, charts are widely stored as bitmap images. Although easily consumed by humans, they are not convenient for other uses. For example, changing the chart style or type or a data value in a chart image practically requires creating a completely new chart, which is often a time-consuming and error-prone process. To assist these tasks, many approaches have been proposed to automatically extract information from chart images with computer vision and machine learning techniques. Although they have achieved promising preliminary results, there are still a lot of challenges to overcome in terms of robustness and accuracy. In this paper, we propose a novel alternative approach called Chartem to address this issue directly from the root. Specifically, we design a data-embedding schema to encode a significant amount of information into the background of a chart image without interfering human perception of the chart. The embedded information, when extracted from the image, can enable a variety of visualization applications to reuse or repurpose chart images. To evaluate the effectiveness of Chartem, we conduct a user study and performance experiments on Chartem embedding and extraction algorithms. We further present several prototype applications to demonstrate the utility of Chartem.</p>","PeriodicalId":13376,"journal":{"name":"IEEE Transactions on Visualization and Computer Graphics","volume":" ","pages":"337-346"},"PeriodicalIF":6.5000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TVCG.2020.3030351","citationCount":"18","resultStr":"{\"title\":\"Chartem: Reviving Chart Images with Data Embedding.\",\"authors\":\"Jiayun Fu, Bin Zhu, Weiwei Cui, Song Ge, Yun Wang, Haidong Zhang, He Huang, Yuanyuan Tang, Dongmei Zhang, Xiaojing Ma\",\"doi\":\"10.1109/TVCG.2020.3030351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In practice, charts are widely stored as bitmap images. Although easily consumed by humans, they are not convenient for other uses. For example, changing the chart style or type or a data value in a chart image practically requires creating a completely new chart, which is often a time-consuming and error-prone process. To assist these tasks, many approaches have been proposed to automatically extract information from chart images with computer vision and machine learning techniques. Although they have achieved promising preliminary results, there are still a lot of challenges to overcome in terms of robustness and accuracy. In this paper, we propose a novel alternative approach called Chartem to address this issue directly from the root. Specifically, we design a data-embedding schema to encode a significant amount of information into the background of a chart image without interfering human perception of the chart. The embedded information, when extracted from the image, can enable a variety of visualization applications to reuse or repurpose chart images. To evaluate the effectiveness of Chartem, we conduct a user study and performance experiments on Chartem embedding and extraction algorithms. We further present several prototype applications to demonstrate the utility of Chartem.</p>\",\"PeriodicalId\":13376,\"journal\":{\"name\":\"IEEE Transactions on Visualization and Computer Graphics\",\"volume\":\" \",\"pages\":\"337-346\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TVCG.2020.3030351\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Visualization and Computer Graphics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TVCG.2020.3030351\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Visualization and Computer Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TVCG.2020.3030351","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Chartem: Reviving Chart Images with Data Embedding.
In practice, charts are widely stored as bitmap images. Although easily consumed by humans, they are not convenient for other uses. For example, changing the chart style or type or a data value in a chart image practically requires creating a completely new chart, which is often a time-consuming and error-prone process. To assist these tasks, many approaches have been proposed to automatically extract information from chart images with computer vision and machine learning techniques. Although they have achieved promising preliminary results, there are still a lot of challenges to overcome in terms of robustness and accuracy. In this paper, we propose a novel alternative approach called Chartem to address this issue directly from the root. Specifically, we design a data-embedding schema to encode a significant amount of information into the background of a chart image without interfering human perception of the chart. The embedded information, when extracted from the image, can enable a variety of visualization applications to reuse or repurpose chart images. To evaluate the effectiveness of Chartem, we conduct a user study and performance experiments on Chartem embedding and extraction algorithms. We further present several prototype applications to demonstrate the utility of Chartem.
期刊介绍:
TVCG is a scholarly, archival journal published monthly. Its Editorial Board strives to publish papers that present important research results and state-of-the-art seminal papers in computer graphics, visualization, and virtual reality. Specific topics include, but are not limited to: rendering technologies; geometric modeling and processing; shape analysis; graphics hardware; animation and simulation; perception, interaction and user interfaces; haptics; computational photography; high-dynamic range imaging and display; user studies and evaluation; biomedical visualization; volume visualization and graphics; visual analytics for machine learning; topology-based visualization; visual programming and software visualization; visualization in data science; virtual reality, augmented reality and mixed reality; advanced display technology, (e.g., 3D, immersive and multi-modal displays); applications of computer graphics and visualization.