Rainer Johannes Klement, Prasanta S. Bandyopadhyay
{"title":"新冠病毒阳性检测的认识论","authors":"Rainer Johannes Klement, Prasanta S. Bandyopadhyay","doi":"10.1007/s10441-020-09393-w","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the epistemological consequences of a positive polymerase chain reaction SARS-CoV test for two relevant hypotheses: (i) V is the hypothesis that an individual has been infected with SARS-CoV-2; (ii) C is the hypothesis that SARS-CoV-2 is the cause of flu-like symptoms in a given patient. We ask two fundamental epistemological questions regarding each hypothesis: First, how much confirmation does a positive test lend to each hypothesis? Second, how much evidence does a positive test provide for each hypothesis against its negation? We respond to each question within a formal Bayesian framework. We construe degree of confirmation as the difference between the posterior probability of the hypothesis and its prior, and the strength of evidence for a hypothesis against its alternative in terms of their likelihood ratio. We find that test specificity—and coinfection probabilities when making inferences about C—were key determinants of confirmation and evidence. Tests with < 87% specificity could not provide strong evidence (likelihood ratio > 8) for V against ¬V regardless of sensitivity. Accordingly, low specificity tests could not provide strong evidence in favor of C in all plausible scenarios modeled. We also show how a positive influenza A test disconfirms C and provides weak evidence against C in dependence on the probability that the patient is influenza A infected given that his/her symptoms are not caused by SARS-CoV-2. Our analysis points out some caveats that should be considered when attributing symptoms or death of a positively tested patient to SARS-CoV-2.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10441-020-09393-w","citationCount":"1","resultStr":"{\"title\":\"The Epistemology of a Positive SARS-CoV-2 Test\",\"authors\":\"Rainer Johannes Klement, Prasanta S. Bandyopadhyay\",\"doi\":\"10.1007/s10441-020-09393-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We investigate the epistemological consequences of a positive polymerase chain reaction SARS-CoV test for two relevant hypotheses: (i) V is the hypothesis that an individual has been infected with SARS-CoV-2; (ii) C is the hypothesis that SARS-CoV-2 is the cause of flu-like symptoms in a given patient. We ask two fundamental epistemological questions regarding each hypothesis: First, how much confirmation does a positive test lend to each hypothesis? Second, how much evidence does a positive test provide for each hypothesis against its negation? We respond to each question within a formal Bayesian framework. We construe degree of confirmation as the difference between the posterior probability of the hypothesis and its prior, and the strength of evidence for a hypothesis against its alternative in terms of their likelihood ratio. We find that test specificity—and coinfection probabilities when making inferences about C—were key determinants of confirmation and evidence. Tests with < 87% specificity could not provide strong evidence (likelihood ratio > 8) for V against ¬V regardless of sensitivity. Accordingly, low specificity tests could not provide strong evidence in favor of C in all plausible scenarios modeled. We also show how a positive influenza A test disconfirms C and provides weak evidence against C in dependence on the probability that the patient is influenza A infected given that his/her symptoms are not caused by SARS-CoV-2. Our analysis points out some caveats that should be considered when attributing symptoms or death of a positively tested patient to SARS-CoV-2.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10441-020-09393-w\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10441-020-09393-w\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-020-09393-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
We investigate the epistemological consequences of a positive polymerase chain reaction SARS-CoV test for two relevant hypotheses: (i) V is the hypothesis that an individual has been infected with SARS-CoV-2; (ii) C is the hypothesis that SARS-CoV-2 is the cause of flu-like symptoms in a given patient. We ask two fundamental epistemological questions regarding each hypothesis: First, how much confirmation does a positive test lend to each hypothesis? Second, how much evidence does a positive test provide for each hypothesis against its negation? We respond to each question within a formal Bayesian framework. We construe degree of confirmation as the difference between the posterior probability of the hypothesis and its prior, and the strength of evidence for a hypothesis against its alternative in terms of their likelihood ratio. We find that test specificity—and coinfection probabilities when making inferences about C—were key determinants of confirmation and evidence. Tests with < 87% specificity could not provide strong evidence (likelihood ratio > 8) for V against ¬V regardless of sensitivity. Accordingly, low specificity tests could not provide strong evidence in favor of C in all plausible scenarios modeled. We also show how a positive influenza A test disconfirms C and provides weak evidence against C in dependence on the probability that the patient is influenza A infected given that his/her symptoms are not caused by SARS-CoV-2. Our analysis points out some caveats that should be considered when attributing symptoms or death of a positively tested patient to SARS-CoV-2.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.