光合反应中心蛋白质动力学对电子转移的控制。

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Michael Gorka, Dmitry A Cherepanov, Alexey Yu Semenov, John H Golbeck
{"title":"光合反应中心蛋白质动力学对电子转移的控制。","authors":"Michael Gorka,&nbsp;Dmitry A Cherepanov,&nbsp;Alexey Yu Semenov,&nbsp;John H Golbeck","doi":"10.1080/10409238.2020.1810623","DOIUrl":null,"url":null,"abstract":"<p><p>Trehalose and glycerol are low molecular mass sugars/polyols that have found widespread use in the protection of native protein states, in both short- and long-term storage of biological materials, and as a means of understanding protein dynamics. These myriad uses are often attributed to their ability to form an amorphous glassy matrix. In glycerol, the glass is formed only at cryogenic temperatures, while in trehalose, the glass is formed at room temperature, but only upon dehydration of the sample. While much work has been carried out to elucidate a mechanistic view of how each of these matrices interact with proteins to provide stability, rarely have the effects of these two independent systems been directly compared to each other. This review aims to compile decades of research on how different glassy matrices affect two types of photosynthetic proteins: (i) the Type II bacterial reaction center from <i>Rhodobacter sphaeroides</i> and (ii) the Type I Photosystem I reaction center from cyanobacteria. By comparing aggregate data on electron transfer, protein structure, and protein dynamics, it appears that the effects of these two distinct matrices are remarkably similar. Both seem to cause a \"tightening\" of the solvation shell when in a glassy state, resulting in severely restricted conformational mobility of the protein and associated water molecules. Thus, trehalose appears to be able to mimic, at room temperature, nearly all of the effects on protein dynamics observed in low temperature glycerol glasses.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"55 5","pages":"425-468"},"PeriodicalIF":6.2000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10409238.2020.1810623","citationCount":"8","resultStr":"{\"title\":\"Control of electron transfer by protein dynamics in photosynthetic reaction centers.\",\"authors\":\"Michael Gorka,&nbsp;Dmitry A Cherepanov,&nbsp;Alexey Yu Semenov,&nbsp;John H Golbeck\",\"doi\":\"10.1080/10409238.2020.1810623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trehalose and glycerol are low molecular mass sugars/polyols that have found widespread use in the protection of native protein states, in both short- and long-term storage of biological materials, and as a means of understanding protein dynamics. These myriad uses are often attributed to their ability to form an amorphous glassy matrix. In glycerol, the glass is formed only at cryogenic temperatures, while in trehalose, the glass is formed at room temperature, but only upon dehydration of the sample. While much work has been carried out to elucidate a mechanistic view of how each of these matrices interact with proteins to provide stability, rarely have the effects of these two independent systems been directly compared to each other. This review aims to compile decades of research on how different glassy matrices affect two types of photosynthetic proteins: (i) the Type II bacterial reaction center from <i>Rhodobacter sphaeroides</i> and (ii) the Type I Photosystem I reaction center from cyanobacteria. By comparing aggregate data on electron transfer, protein structure, and protein dynamics, it appears that the effects of these two distinct matrices are remarkably similar. Both seem to cause a \\\"tightening\\\" of the solvation shell when in a glassy state, resulting in severely restricted conformational mobility of the protein and associated water molecules. Thus, trehalose appears to be able to mimic, at room temperature, nearly all of the effects on protein dynamics observed in low temperature glycerol glasses.</p>\",\"PeriodicalId\":10794,\"journal\":{\"name\":\"Critical Reviews in Biochemistry and Molecular Biology\",\"volume\":\"55 5\",\"pages\":\"425-468\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10409238.2020.1810623\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10409238.2020.1810623\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10409238.2020.1810623","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 8

摘要

海藻糖和甘油是低分子质量糖/多元醇,广泛用于保护天然蛋白质状态,生物材料的短期和长期储存,以及作为理解蛋白质动力学的手段。这些无数的用途通常归因于它们形成无定形玻璃基体的能力。在甘油中,玻璃只在低温下形成,而在海藻糖中,玻璃在室温下形成,但只在样品脱水的情况下形成。虽然已经进行了大量的工作来阐明这些基质如何与蛋白质相互作用以提供稳定性的机制观点,但很少有这两个独立系统的影响被直接比较。本文综述了几十年来关于不同玻璃基质如何影响两种光合蛋白的研究:(i)球形红杆菌的II型细菌反应中心和(II)蓝藻的i型光系统i反应中心。通过比较电子转移、蛋白质结构和蛋白质动力学的总体数据,可以看出这两种不同基质的作用非常相似。当处于玻璃态时,两者似乎都会导致溶剂化壳的“收紧”,导致蛋白质和相关水分子的构象流动性受到严重限制。因此,海藻糖似乎能够在室温下模拟在低温甘油玻璃中观察到的几乎所有对蛋白质动力学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control of electron transfer by protein dynamics in photosynthetic reaction centers.

Trehalose and glycerol are low molecular mass sugars/polyols that have found widespread use in the protection of native protein states, in both short- and long-term storage of biological materials, and as a means of understanding protein dynamics. These myriad uses are often attributed to their ability to form an amorphous glassy matrix. In glycerol, the glass is formed only at cryogenic temperatures, while in trehalose, the glass is formed at room temperature, but only upon dehydration of the sample. While much work has been carried out to elucidate a mechanistic view of how each of these matrices interact with proteins to provide stability, rarely have the effects of these two independent systems been directly compared to each other. This review aims to compile decades of research on how different glassy matrices affect two types of photosynthetic proteins: (i) the Type II bacterial reaction center from Rhodobacter sphaeroides and (ii) the Type I Photosystem I reaction center from cyanobacteria. By comparing aggregate data on electron transfer, protein structure, and protein dynamics, it appears that the effects of these two distinct matrices are remarkably similar. Both seem to cause a "tightening" of the solvation shell when in a glassy state, resulting in severely restricted conformational mobility of the protein and associated water molecules. Thus, trehalose appears to be able to mimic, at room temperature, nearly all of the effects on protein dynamics observed in low temperature glycerol glasses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
14.90
自引率
0.00%
发文量
6
期刊介绍: As the discipline of biochemistry and molecular biology have greatly advanced in the last quarter century, significant contributions have been made towards the advancement of general medicine, genetics, immunology, developmental biology, and biophysics. Investigators in a wide range of disciplines increasingly require an appreciation of the significance of current biochemical and molecular biology advances while, members of the biochemical and molecular biology community itself seek concise information on advances in areas remote from their own specialties. Critical Reviews in Biochemistry and Molecular Biology believes that well-written review articles prove an effective device for the integration and meaningful comprehension of vast, often contradictory, literature. Review articles also provide an opportunity for creative scholarship by synthesizing known facts, fruitful hypotheses, and new concepts. Accordingly, Critical Reviews in Biochemistry and Molecular Biology publishes high-quality reviews that organize, evaluate, and present the current status of high-impact, current issues in the area of biochemistry and molecular biology. Topics are selected on the advice of an advisory board of outstanding scientists, who also suggest authors of special competence. The topics chosen are sufficiently broad to interest a wide audience of readers, yet focused enough to be within the competence of a single author. Authors are chosen based on their activity in the field and their proven ability to produce a well-written publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信