失调的离子通道和转运蛋白如何参与食管癌、肝癌和结直肠癌。

2区 医学 Q1 Biochemistry, Genetics and Molecular Biology
Christian Stock
{"title":"失调的离子通道和转运蛋白如何参与食管癌、肝癌和结直肠癌。","authors":"Christian Stock","doi":"10.1007/112_2020_41","DOIUrl":null,"url":null,"abstract":"<p><p>Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca<sup>2+</sup>, K<sup>+</sup>, Na<sup>+</sup>, and Cl<sup>-</sup> channels over divalent metal transporters, Na<sup>+</sup> or Cl<sup>-</sup> coupled Ca<sup>2+</sup>, HCO<sub>3</sub><sup>-</sup> and H<sup>+</sup> exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca<sup>2+</sup>, Akt/NF-κB, and Ca<sup>2+</sup>- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.</p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":"181 ","pages":"129-222"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/112_2020_41","citationCount":"7","resultStr":"{\"title\":\"How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer.\",\"authors\":\"Christian Stock\",\"doi\":\"10.1007/112_2020_41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca<sup>2+</sup>, K<sup>+</sup>, Na<sup>+</sup>, and Cl<sup>-</sup> channels over divalent metal transporters, Na<sup>+</sup> or Cl<sup>-</sup> coupled Ca<sup>2+</sup>, HCO<sub>3</sub><sup>-</sup> and H<sup>+</sup> exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca<sup>2+</sup>, Akt/NF-κB, and Ca<sup>2+</sup>- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.</p>\",\"PeriodicalId\":21169,\"journal\":{\"name\":\"Reviews of Physiology Biochemistry and Pharmacology\",\"volume\":\"181 \",\"pages\":\"129-222\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/112_2020_41\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Physiology Biochemistry and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/112_2020_41\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Physiology Biochemistry and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/112_2020_41","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 7

摘要

在过去的二十年中,对失调的离子通道和转运体如何参与致癌和肿瘤生长和进展(包括侵袭性和转移)的理解呈指数级增长。目前的综述指出了几乎所有的离子通道和转运体,其错误的表达或调节导致食管癌、肝细胞癌和结直肠癌。从二价金属转运体上的Ca2+、K+、Na+和Cl-通道,到Na+或Cl-偶联的Ca2+、HCO3-和H+交换体,再到单羧酸盐载体和有机阴离子和阳离子转运体,种类繁多。在一些病例中,这些离子通道/转运体与恶性肿瘤交织的潜在机制已被完全或至少部分揭示。Ca2+、Akt/NF-κ b和Ca2+或ph依赖性Wnt/β-catenin信号通路作为离子通道/转运体干扰基因表达、调节细胞增殖、触发上皮向间质转化、促进细胞运动和转移的交叉点出现。此外,miRs、lncrna和DNA甲基化代表了编码离子通道/转运体的基因错误表达、它们的功能失调和癌症之间的潜在联系。所有这些分子相互作用的知识为治疗策略和方法提供了基础,其中一些将在本文中讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Dysregulated Ion Channels and Transporters Take a Hand in Esophageal, Liver, and Colorectal Cancer.

Over the last two decades, the understanding of how dysregulated ion channels and transporters are involved in carcinogenesis and tumor growth and progression, including invasiveness and metastasis, has been increasing exponentially. The present review specifies virtually all ion channels and transporters whose faulty expression or regulation contributes to esophageal, hepatocellular, and colorectal cancer. The variety reaches from Ca2+, K+, Na+, and Cl- channels over divalent metal transporters, Na+ or Cl- coupled Ca2+, HCO3- and H+ exchangers to monocarboxylate carriers and organic anion and cation transporters. In several cases, the underlying mechanisms by which these ion channels/transporters are interwoven with malignancies have been fully or at least partially unveiled. Ca2+, Akt/NF-κB, and Ca2+- or pH-dependent Wnt/β-catenin signaling emerge as cross points through which ion channels/transporters interfere with gene expression, modulate cell proliferation, trigger epithelial-to-mesenchymal transition, and promote cell motility and metastasis. Also miRs, lncRNAs, and DNA methylation represent potential links between the misexpression of genes encoding for ion channels/transporters, their malfunctioning, and cancer. The knowledge of all these molecular interactions has provided the basis for therapeutic strategies and approaches, some of which will be broached in this review.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews of Physiology Biochemistry and Pharmacology
Reviews of Physiology Biochemistry and Pharmacology 医学-生化与分子生物学
CiteScore
11.40
自引率
0.00%
发文量
5
审稿时长
>12 weeks
期刊介绍: The highly successful Reviews of Physiology, Biochemistry and Pharmacology continue to offer high-quality, in-depth reviews covering the full range of modern physiology, biochemistry and pharmacology. Leading researchers are specially invited to provide a complete understanding of the key topics in these archetypal multidisciplinary fields. In a form immediately useful to scientists, this periodical aims to filter, highlight and review the latest developments in these rapidly advancing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信