剖析作物数量性状变异上位性的新视野。

IF 8.7 1区 生物学 Q1 GENETICS & HEREDITY
Annual review of genetics Pub Date : 2020-11-23 Epub Date: 2020-09-01 DOI:10.1146/annurev-genet-050720-122916
Sebastian Soyk, Matthias Benoit, Zachary B Lippman
{"title":"剖析作物数量性状变异上位性的新视野。","authors":"Sebastian Soyk,&nbsp;Matthias Benoit,&nbsp;Zachary B Lippman","doi":"10.1146/annurev-genet-050720-122916","DOIUrl":null,"url":null,"abstract":"<p><p>Uncovering the genes, variants, and interactions underlying crop diversity is a frontier in plant genetics. Phenotypic variation often does not reflect the cumulative effect of individual gene mutations. This deviation is due to epistasis, in which interactions between alleles are often unpredictable and quantitative in effect. Recent advances in genomics and genome-editing technologies are elevating the study of epistasis in crops. Using the traits and developmental pathways that were major targets in domestication and breeding, we highlight how epistasis is central in guiding the behavior of the genetic variation that shapes quantitative trait variation. We outline new strategies that illuminate how quantitative epistasis from modified gene dosage defines background dependencies. Advancing our understanding of epistasis in crops can reveal new principles and approaches to engineering targeted improvements in agriculture.</p>","PeriodicalId":8035,"journal":{"name":"Annual review of genetics","volume":"54 ","pages":"287-307"},"PeriodicalIF":8.7000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-genet-050720-122916","citationCount":"18","resultStr":"{\"title\":\"New Horizons for Dissecting Epistasis in Crop Quantitative Trait Variation.\",\"authors\":\"Sebastian Soyk,&nbsp;Matthias Benoit,&nbsp;Zachary B Lippman\",\"doi\":\"10.1146/annurev-genet-050720-122916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Uncovering the genes, variants, and interactions underlying crop diversity is a frontier in plant genetics. Phenotypic variation often does not reflect the cumulative effect of individual gene mutations. This deviation is due to epistasis, in which interactions between alleles are often unpredictable and quantitative in effect. Recent advances in genomics and genome-editing technologies are elevating the study of epistasis in crops. Using the traits and developmental pathways that were major targets in domestication and breeding, we highlight how epistasis is central in guiding the behavior of the genetic variation that shapes quantitative trait variation. We outline new strategies that illuminate how quantitative epistasis from modified gene dosage defines background dependencies. Advancing our understanding of epistasis in crops can reveal new principles and approaches to engineering targeted improvements in agriculture.</p>\",\"PeriodicalId\":8035,\"journal\":{\"name\":\"Annual review of genetics\",\"volume\":\"54 \",\"pages\":\"287-307\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2020-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-genet-050720-122916\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-genet-050720-122916\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genet-050720-122916","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 18

摘要

揭示作物多样性背后的基因、变异和相互作用是植物遗传学的前沿。表型变异往往不能反映个体基因突变的累积效应。这种偏差是由于上位性,其中等位基因之间的相互作用往往是不可预测的和定量的影响。基因组学和基因组编辑技术的最新进展正在提升对作物上位性的研究。利用作为驯化和育种主要目标的性状和发育途径,我们强调了上位性如何在指导影响数量性状变异的遗传变异行为方面发挥核心作用。我们概述了新的策略,阐明如何定量上位从修改基因剂量定义背景依赖性。推进我们对作物上位性的理解可以揭示农业工程改进的新原理和新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Horizons for Dissecting Epistasis in Crop Quantitative Trait Variation.

Uncovering the genes, variants, and interactions underlying crop diversity is a frontier in plant genetics. Phenotypic variation often does not reflect the cumulative effect of individual gene mutations. This deviation is due to epistasis, in which interactions between alleles are often unpredictable and quantitative in effect. Recent advances in genomics and genome-editing technologies are elevating the study of epistasis in crops. Using the traits and developmental pathways that were major targets in domestication and breeding, we highlight how epistasis is central in guiding the behavior of the genetic variation that shapes quantitative trait variation. We outline new strategies that illuminate how quantitative epistasis from modified gene dosage defines background dependencies. Advancing our understanding of epistasis in crops can reveal new principles and approaches to engineering targeted improvements in agriculture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of genetics
Annual review of genetics 生物-遗传学
CiteScore
18.30
自引率
0.90%
发文量
17
期刊介绍: The Annual Review of Genetics, published since 1967, comprehensively covers significant advancements in genetics. It encompasses various areas such as biochemical, behavioral, cell, and developmental genetics, evolutionary and population genetics, chromosome structure and transmission, gene function and expression, mutation and repair, genomics, immunogenetics, and other topics related to the genetics of viruses, bacteria, fungi, plants, animals, and humans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信