全息生物的表型遗传力:一种进化模型。

Q4 Biochemistry, Genetics and Molecular Biology
Saúl Huitzil, Santiago Sandoval-Motta, Alejandro Frank, Maximino Aldana
{"title":"全息生物的表型遗传力:一种进化模型。","authors":"Saúl Huitzil,&nbsp;Santiago Sandoval-Motta,&nbsp;Alejandro Frank,&nbsp;Maximino Aldana","doi":"10.1007/978-3-030-51849-3_7","DOIUrl":null,"url":null,"abstract":"<p><p>Many complex diseases are expressed with high incidence only in certain populations. Genealogy studies determine that these diseases are inherited with a high probability. However, genetic studies have been unable to identify the genomic signatures responsible for such heritability, as identifying the genetic variants that make a population prone to a given disease is not enough to explain its high occurrence within the population. This gap is known as the missing heritability problem. We know that the microbiota plays a very important role in determining many important phenotypic characteristics of its host, in particular the complex diseases for which the missing heritability occurs. Therefore, when computing the heritability of a phenotype, it is important to consider not only the genetic variation in the host but also in its microbiota. Here we test this hypothesis by studying an evolutionary model based on gene regulatory networks. Our results show that the holobiont (the host plus its microbiota) is capable of generating a much larger variability than the host alone, greatly reducing the missing heritability of the phenotype. This result strongly suggests that a considerably large part of the missing heritability can be attributed to the microbiome.</p>","PeriodicalId":39320,"journal":{"name":"Results and Problems in Cell Differentiation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phenotype Heritability in Holobionts: An Evolutionary Model.\",\"authors\":\"Saúl Huitzil,&nbsp;Santiago Sandoval-Motta,&nbsp;Alejandro Frank,&nbsp;Maximino Aldana\",\"doi\":\"10.1007/978-3-030-51849-3_7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Many complex diseases are expressed with high incidence only in certain populations. Genealogy studies determine that these diseases are inherited with a high probability. However, genetic studies have been unable to identify the genomic signatures responsible for such heritability, as identifying the genetic variants that make a population prone to a given disease is not enough to explain its high occurrence within the population. This gap is known as the missing heritability problem. We know that the microbiota plays a very important role in determining many important phenotypic characteristics of its host, in particular the complex diseases for which the missing heritability occurs. Therefore, when computing the heritability of a phenotype, it is important to consider not only the genetic variation in the host but also in its microbiota. Here we test this hypothesis by studying an evolutionary model based on gene regulatory networks. Our results show that the holobiont (the host plus its microbiota) is capable of generating a much larger variability than the host alone, greatly reducing the missing heritability of the phenotype. This result strongly suggests that a considerably large part of the missing heritability can be attributed to the microbiome.</p>\",\"PeriodicalId\":39320,\"journal\":{\"name\":\"Results and Problems in Cell Differentiation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results and Problems in Cell Differentiation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-51849-3_7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results and Problems in Cell Differentiation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-51849-3_7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

许多复杂疾病仅在某些人群中表现出高发病率。家谱研究表明,这些疾病很有可能遗传。然而,遗传学研究一直无法确定导致这种遗传性的基因组特征,因为确定使一个群体容易患上某种疾病的遗传变异不足以解释这种疾病在人群中的高发生率。这种差距被称为缺失遗传性问题。我们知道,微生物群在决定宿主的许多重要表型特征方面起着非常重要的作用,特别是在遗传力缺失的复杂疾病中。因此,在计算表型的遗传力时,重要的是不仅要考虑宿主的遗传变异,还要考虑宿主微生物群的遗传变异。在这里,我们通过研究一个基于基因调控网络的进化模型来验证这一假设。我们的研究结果表明,holobiont(宿主及其微生物群)能够产生比单独宿主大得多的变异性,大大减少了表型缺失的遗传力。这一结果有力地表明,缺失的遗传性的相当大一部分可归因于微生物组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phenotype Heritability in Holobionts: An Evolutionary Model.

Many complex diseases are expressed with high incidence only in certain populations. Genealogy studies determine that these diseases are inherited with a high probability. However, genetic studies have been unable to identify the genomic signatures responsible for such heritability, as identifying the genetic variants that make a population prone to a given disease is not enough to explain its high occurrence within the population. This gap is known as the missing heritability problem. We know that the microbiota plays a very important role in determining many important phenotypic characteristics of its host, in particular the complex diseases for which the missing heritability occurs. Therefore, when computing the heritability of a phenotype, it is important to consider not only the genetic variation in the host but also in its microbiota. Here we test this hypothesis by studying an evolutionary model based on gene regulatory networks. Our results show that the holobiont (the host plus its microbiota) is capable of generating a much larger variability than the host alone, greatly reducing the missing heritability of the phenotype. This result strongly suggests that a considerably large part of the missing heritability can be attributed to the microbiome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results and Problems in Cell Differentiation
Results and Problems in Cell Differentiation Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
1.90
自引率
0.00%
发文量
21
期刊介绍: Results and Problems in Cell Differentiation is an up-to-date book series that presents and explores selected questions of cell and developmental biology. Each volume focuses on a single, well-defined topic. Reviews address basic questions and phenomena, but also provide concise information on the most recent advances. Together, the volumes provide a valuable overview of this exciting and dynamically expanding field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信