{"title":"疾病遥感。","authors":"Erich-Christian Oerke","doi":"10.1146/annurev-phyto-010820-012832","DOIUrl":null,"url":null,"abstract":"<p><p>Detection, identification, and quantification of plant diseases by sensor techniques are expected to enable a more precise disease control, as sensors are sensitive, objective, and highly available for disease assessment. Recent progress in sensor technology and data processing is very promising; nevertheless, technical constraints and issues inherent to variability in host-pathogen interactions currently limit the use of sensors in various fields of application. The information from spectral [e.g., RGB (red, green, blue)], multispectral, and hyperspectral sensors that measure reflectance, fluorescence, and emission of radiation or from electronic noses that detect volatile organic compounds released from plants or pathogens, as well as the potential of sensors to characterize the health status of crops, is evaluated based on the recent literature. Phytopathological aspects of remote sensing of plant diseases across different scales and for various purposes are discussed, including spatial disease patterns, epidemic spread of pathogens, crop characteristics, and links to disease control. Future challenges in sensor use are identified.</p>","PeriodicalId":8251,"journal":{"name":"Annual review of phytopathology","volume":"58 ","pages":"225-252"},"PeriodicalIF":9.1000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-phyto-010820-012832","citationCount":"33","resultStr":"{\"title\":\"Remote Sensing of Diseases.\",\"authors\":\"Erich-Christian Oerke\",\"doi\":\"10.1146/annurev-phyto-010820-012832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Detection, identification, and quantification of plant diseases by sensor techniques are expected to enable a more precise disease control, as sensors are sensitive, objective, and highly available for disease assessment. Recent progress in sensor technology and data processing is very promising; nevertheless, technical constraints and issues inherent to variability in host-pathogen interactions currently limit the use of sensors in various fields of application. The information from spectral [e.g., RGB (red, green, blue)], multispectral, and hyperspectral sensors that measure reflectance, fluorescence, and emission of radiation or from electronic noses that detect volatile organic compounds released from plants or pathogens, as well as the potential of sensors to characterize the health status of crops, is evaluated based on the recent literature. Phytopathological aspects of remote sensing of plant diseases across different scales and for various purposes are discussed, including spatial disease patterns, epidemic spread of pathogens, crop characteristics, and links to disease control. Future challenges in sensor use are identified.</p>\",\"PeriodicalId\":8251,\"journal\":{\"name\":\"Annual review of phytopathology\",\"volume\":\"58 \",\"pages\":\"225-252\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2020-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-phyto-010820-012832\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-phyto-010820-012832\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-phyto-010820-012832","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Detection, identification, and quantification of plant diseases by sensor techniques are expected to enable a more precise disease control, as sensors are sensitive, objective, and highly available for disease assessment. Recent progress in sensor technology and data processing is very promising; nevertheless, technical constraints and issues inherent to variability in host-pathogen interactions currently limit the use of sensors in various fields of application. The information from spectral [e.g., RGB (red, green, blue)], multispectral, and hyperspectral sensors that measure reflectance, fluorescence, and emission of radiation or from electronic noses that detect volatile organic compounds released from plants or pathogens, as well as the potential of sensors to characterize the health status of crops, is evaluated based on the recent literature. Phytopathological aspects of remote sensing of plant diseases across different scales and for various purposes are discussed, including spatial disease patterns, epidemic spread of pathogens, crop characteristics, and links to disease control. Future challenges in sensor use are identified.
期刊介绍:
The Annual Review of Phytopathology, established in 1963, covers major advancements in plant pathology, including plant disease diagnosis, pathogens, host-pathogen Interactions, epidemiology and ecology, breeding for resistance and plant disease management, and includes a special section on the development of concepts. The journal is now open access through Annual Reviews' Subscribe to Open program, with articles published under a CC BY license.