Chiemela Peter Nwogwugwu, Yeongkuk Kim, Hyunji Choi, Jun Heon Lee, Seung-Hwan Lee
{"title":"在模拟的韩国肉牛群体中使用不同的选择和评估方法评估基因组预测的准确性。","authors":"Chiemela Peter Nwogwugwu, Yeongkuk Kim, Hyunji Choi, Jun Heon Lee, Seung-Hwan Lee","doi":"10.5713/ajas.20.0217","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study assessed genomic prediction accuracies based on different selection methods, evaluation procedures, training population (TP) sizes, heritability (h2) levels, marker densities and pedigree error (PE) rates in a simulated Korean beef cattle population.</p><p><strong>Methods: </strong>A simulation was performed using two different selection methods, phenotypic and estimated breeding value (EBV), with an h2 of 0.1, 0.3, or 0.5 and marker densities of 10, 50, or 777K. A total of 275 males and 2,475 females were randomly selected from the last generation to simulate ten recent generations. The simulation of the PE dataset was modified using only the EBV method of selection with a marker density of 50K and a heritability of 0.3. The proportions of errors substituted were 10%, 20%, 30%, and 40%, respectively. Genetic evaluations were performed using genomic best linear unbiased prediction (GBLUP) and single-step GBLUP (ssGBLUP) with different weighted values. The accuracies of the predictions were determined.</p><p><strong>Results: </strong>Compared with phenotypic selection, the results revealed that the prediction accuracies obtained using GBLUP and ssGBLUP increased across heritability levels and TP sizes during EBV selection. However, an increase in the marker density did not yield higher accuracy in either method except when the h2 was 0.3 under the EBV selection method. Based on EBV selection with a heritability of 0.1 and a marker density of 10K, GBLUP and ssGBLUP_0.95 prediction accuracy was higher than that obtained by phenotypic selection. The prediction accuracies from ssGBLUP_0.95 outperformed those from the GBLUP method across all scenarios. When errors were introduced into the pedigree dataset, the prediction accuracies were only minimally influenced across all scenarios.</p><p><strong>Conclusion: </strong>Our study suggests that the use of ssGBLUP_0.95, EBV selection, and low marker density could help improve genetic gains in beef cattle.</p>","PeriodicalId":8558,"journal":{"name":"Asian-Australasian Journal of Animal Sciences","volume":"33 12","pages":"1912-1921"},"PeriodicalIF":2.2000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649411/pdf/","citationCount":"0","resultStr":"{\"title\":\"Assessment of genomic prediction accuracy using different selection and evaluation approaches in a simulated Korean beef cattle population.\",\"authors\":\"Chiemela Peter Nwogwugwu, Yeongkuk Kim, Hyunji Choi, Jun Heon Lee, Seung-Hwan Lee\",\"doi\":\"10.5713/ajas.20.0217\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>This study assessed genomic prediction accuracies based on different selection methods, evaluation procedures, training population (TP) sizes, heritability (h2) levels, marker densities and pedigree error (PE) rates in a simulated Korean beef cattle population.</p><p><strong>Methods: </strong>A simulation was performed using two different selection methods, phenotypic and estimated breeding value (EBV), with an h2 of 0.1, 0.3, or 0.5 and marker densities of 10, 50, or 777K. A total of 275 males and 2,475 females were randomly selected from the last generation to simulate ten recent generations. The simulation of the PE dataset was modified using only the EBV method of selection with a marker density of 50K and a heritability of 0.3. The proportions of errors substituted were 10%, 20%, 30%, and 40%, respectively. Genetic evaluations were performed using genomic best linear unbiased prediction (GBLUP) and single-step GBLUP (ssGBLUP) with different weighted values. The accuracies of the predictions were determined.</p><p><strong>Results: </strong>Compared with phenotypic selection, the results revealed that the prediction accuracies obtained using GBLUP and ssGBLUP increased across heritability levels and TP sizes during EBV selection. However, an increase in the marker density did not yield higher accuracy in either method except when the h2 was 0.3 under the EBV selection method. Based on EBV selection with a heritability of 0.1 and a marker density of 10K, GBLUP and ssGBLUP_0.95 prediction accuracy was higher than that obtained by phenotypic selection. The prediction accuracies from ssGBLUP_0.95 outperformed those from the GBLUP method across all scenarios. When errors were introduced into the pedigree dataset, the prediction accuracies were only minimally influenced across all scenarios.</p><p><strong>Conclusion: </strong>Our study suggests that the use of ssGBLUP_0.95, EBV selection, and low marker density could help improve genetic gains in beef cattle.</p>\",\"PeriodicalId\":8558,\"journal\":{\"name\":\"Asian-Australasian Journal of Animal Sciences\",\"volume\":\"33 12\",\"pages\":\"1912-1921\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7649411/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian-Australasian Journal of Animal Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5713/ajas.20.0217\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/6/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian-Australasian Journal of Animal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5713/ajas.20.0217","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Assessment of genomic prediction accuracy using different selection and evaluation approaches in a simulated Korean beef cattle population.
Objective: This study assessed genomic prediction accuracies based on different selection methods, evaluation procedures, training population (TP) sizes, heritability (h2) levels, marker densities and pedigree error (PE) rates in a simulated Korean beef cattle population.
Methods: A simulation was performed using two different selection methods, phenotypic and estimated breeding value (EBV), with an h2 of 0.1, 0.3, or 0.5 and marker densities of 10, 50, or 777K. A total of 275 males and 2,475 females were randomly selected from the last generation to simulate ten recent generations. The simulation of the PE dataset was modified using only the EBV method of selection with a marker density of 50K and a heritability of 0.3. The proportions of errors substituted were 10%, 20%, 30%, and 40%, respectively. Genetic evaluations were performed using genomic best linear unbiased prediction (GBLUP) and single-step GBLUP (ssGBLUP) with different weighted values. The accuracies of the predictions were determined.
Results: Compared with phenotypic selection, the results revealed that the prediction accuracies obtained using GBLUP and ssGBLUP increased across heritability levels and TP sizes during EBV selection. However, an increase in the marker density did not yield higher accuracy in either method except when the h2 was 0.3 under the EBV selection method. Based on EBV selection with a heritability of 0.1 and a marker density of 10K, GBLUP and ssGBLUP_0.95 prediction accuracy was higher than that obtained by phenotypic selection. The prediction accuracies from ssGBLUP_0.95 outperformed those from the GBLUP method across all scenarios. When errors were introduced into the pedigree dataset, the prediction accuracies were only minimally influenced across all scenarios.
Conclusion: Our study suggests that the use of ssGBLUP_0.95, EBV selection, and low marker density could help improve genetic gains in beef cattle.
期刊介绍:
Asian-Australasian Journal of Animal Sciences (AJAS) aims to publish original and cutting-edge research results and reviews on animal-related aspects of the life sciences. Emphasis will be placed on studies involving farm animals such as cattle, buffaloes, sheep, goats, pigs, horses, and poultry. Studies for the improvement of human health using animal models may also be publishable.
AJAS will encompass all areas of animal production and fundamental aspects of animal sciences: breeding and genetics, reproduction and physiology, nutrition, meat and milk science, biotechnology, behavior, welfare, health, and livestock farming systems.