IMPARO:通过参数优化推断微生物相互作用。

IF 2.4 3区 生物学 Q4 CELL BIOLOGY
Rajith Vidanaarachchi, Marnie Shaw, Sen-Lin Tang, Saman Halgamuge
{"title":"IMPARO:通过参数优化推断微生物相互作用。","authors":"Rajith Vidanaarachchi, Marnie Shaw, Sen-Lin Tang, Saman Halgamuge","doi":"10.1186/s12860-020-00269-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Microbial Interaction Networks (MINs) provide important information for understanding bacterial communities. MINs can be inferred by examining microbial abundance profiles. Abundance profiles are often interpreted with the Lotka Volterra model in research. However existing research fails to consider a biologically meaningful underlying mathematical model for MINs or to address the possibility of multiple solutions.</p><p><strong>Results: </strong>In this paper we present IMPARO, a method for inferring microbial interactions through parameter optimisation. We use biologically meaningful models for both the abundance profile, as well as the MIN. We show how multiple MINs could be inferred with similar reconstructed abundance profile accuracy, and argue that a unique solution is not always satisfactory. Using our method, we successfully inferred clear interactions in the gut microbiome which have been previously observed in in-vitro experiments.</p><p><strong>Conclusions: </strong>IMPARO was used to successfully infer microbial interactions in human microbiome samples as well as in a varied set of simulated data. The work also highlights the importance of considering multiple solutions for MINs.</p>","PeriodicalId":9099,"journal":{"name":"BMC Molecular and Cell Biology","volume":"21 Suppl 1","pages":"34"},"PeriodicalIF":2.4000,"publicationDate":"2020-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s12860-020-00269-y","citationCount":"7","resultStr":"{\"title\":\"IMPARO: inferring microbial interactions through parameter optimisation.\",\"authors\":\"Rajith Vidanaarachchi, Marnie Shaw, Sen-Lin Tang, Saman Halgamuge\",\"doi\":\"10.1186/s12860-020-00269-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Microbial Interaction Networks (MINs) provide important information for understanding bacterial communities. MINs can be inferred by examining microbial abundance profiles. Abundance profiles are often interpreted with the Lotka Volterra model in research. However existing research fails to consider a biologically meaningful underlying mathematical model for MINs or to address the possibility of multiple solutions.</p><p><strong>Results: </strong>In this paper we present IMPARO, a method for inferring microbial interactions through parameter optimisation. We use biologically meaningful models for both the abundance profile, as well as the MIN. We show how multiple MINs could be inferred with similar reconstructed abundance profile accuracy, and argue that a unique solution is not always satisfactory. Using our method, we successfully inferred clear interactions in the gut microbiome which have been previously observed in in-vitro experiments.</p><p><strong>Conclusions: </strong>IMPARO was used to successfully infer microbial interactions in human microbiome samples as well as in a varied set of simulated data. The work also highlights the importance of considering multiple solutions for MINs.</p>\",\"PeriodicalId\":9099,\"journal\":{\"name\":\"BMC Molecular and Cell Biology\",\"volume\":\"21 Suppl 1\",\"pages\":\"34\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2020-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s12860-020-00269-y\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Molecular and Cell Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12860-020-00269-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Molecular and Cell Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12860-020-00269-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 7

摘要

背景:微生物相互作用网络(Microbial Interaction Networks, MINs)为了解细菌群落提供了重要信息。可以通过检查微生物丰度剖面来推断最小值。在研究中,通常使用Lotka Volterra模型来解释丰度曲线。然而,现有的研究未能考虑一个具有生物学意义的潜在数学模型,也没有解决多种解决方案的可能性。结果:在本文中,我们提出了IMPARO,一种通过参数优化推断微生物相互作用的方法。我们对丰度剖面和最小值都使用了具有生物学意义的模型。我们展示了如何用相似的重建丰度剖面精度推断多个最小值,并认为唯一的解决方案并不总是令人满意。使用我们的方法,我们成功地推断出肠道微生物组中明确的相互作用,这在体外实验中已经被观察到。结论:IMPARO被用于成功地推断人类微生物组样品中的微生物相互作用以及各种模拟数据。这项工作还强调了为MINs考虑多种解决方案的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

IMPARO: inferring microbial interactions through parameter optimisation.

IMPARO: inferring microbial interactions through parameter optimisation.

IMPARO: inferring microbial interactions through parameter optimisation.

IMPARO: inferring microbial interactions through parameter optimisation.

Background: Microbial Interaction Networks (MINs) provide important information for understanding bacterial communities. MINs can be inferred by examining microbial abundance profiles. Abundance profiles are often interpreted with the Lotka Volterra model in research. However existing research fails to consider a biologically meaningful underlying mathematical model for MINs or to address the possibility of multiple solutions.

Results: In this paper we present IMPARO, a method for inferring microbial interactions through parameter optimisation. We use biologically meaningful models for both the abundance profile, as well as the MIN. We show how multiple MINs could be inferred with similar reconstructed abundance profile accuracy, and argue that a unique solution is not always satisfactory. Using our method, we successfully inferred clear interactions in the gut microbiome which have been previously observed in in-vitro experiments.

Conclusions: IMPARO was used to successfully infer microbial interactions in human microbiome samples as well as in a varied set of simulated data. The work also highlights the importance of considering multiple solutions for MINs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Molecular and Cell Biology
BMC Molecular and Cell Biology Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.50
自引率
0.00%
发文量
46
审稿时长
27 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信