Nagore Del-Río-Ibisate, Rocío Granda-Díaz, Juan P Rodrigo, Sofía T Menéndez, Juana M García-Pedrero
{"title":"离子通道失调在头颈部肿瘤中的临床应用前景。","authors":"Nagore Del-Río-Ibisate, Rocío Granda-Díaz, Juan P Rodrigo, Sofía T Menéndez, Juana M García-Pedrero","doi":"10.1007/112_2020_38","DOIUrl":null,"url":null,"abstract":"<p><p>Head and neck cancers are a highly complex and heterogeneous group of malignancies that involve very diverse anatomical structures and distinct aetiological factors, treatments and clinical outcomes. Among them, head and neck squamous cell carcinomas (HNSCC) are predominant and the sixth most common cancer worldwide with still low survival rates. Omic technologies have unravelled the intricacies of tumour biology, harbouring a large diversity of genetic and molecular changes to drive the carcinogenesis process. Nonetheless, this remarkable heterogeneity of molecular alterations opens up an immense opportunity to discover novel biomarkers and develop molecular-targeted therapies. Increasing evidence demonstrates that dysregulation of ion channel expression and/or function is frequently and commonly observed in a variety of cancers from different origin. As a consequence, the concept of ion channels as potential membrane therapeutic targets and/or biomarkers for cancer diagnosis and prognosis has attracted growing attention. This chapter intends to comprehensively and critically review the current state-of-art ion channel dysregulation specifically focusing on head and neck cancers and to formulate the major challenges and research needs to translate this knowledge into clinical application. Based on current reported data, various voltage-gated potassium (K<sub>v</sub>) channels (i.e. K<sub>v</sub>3.4, K<sub>v</sub>10.1 and K<sub>v</sub>11.1) have been found frequently aberrantly expressed in HNSCC as well as precancerous lesions and are highlighted as clinically and biologically relevant features in both early stages of tumourigenesis and late stages of disease progression. More importantly, they also emerge as promising candidates as cancer risk markers, tumour markers and potential anti-proliferative and anti-metastatic targets for therapeutic interventions; however, the oncogenic properties seem to be independent of their ion-conducting function.</p>","PeriodicalId":21169,"journal":{"name":"Reviews of Physiology Biochemistry and Pharmacology","volume":"181 ","pages":"375-427"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/112_2020_38","citationCount":"6","resultStr":"{\"title\":\"Ion Channel Dysregulation in Head and Neck Cancers: Perspectives for Clinical Application.\",\"authors\":\"Nagore Del-Río-Ibisate, Rocío Granda-Díaz, Juan P Rodrigo, Sofía T Menéndez, Juana M García-Pedrero\",\"doi\":\"10.1007/112_2020_38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Head and neck cancers are a highly complex and heterogeneous group of malignancies that involve very diverse anatomical structures and distinct aetiological factors, treatments and clinical outcomes. Among them, head and neck squamous cell carcinomas (HNSCC) are predominant and the sixth most common cancer worldwide with still low survival rates. Omic technologies have unravelled the intricacies of tumour biology, harbouring a large diversity of genetic and molecular changes to drive the carcinogenesis process. Nonetheless, this remarkable heterogeneity of molecular alterations opens up an immense opportunity to discover novel biomarkers and develop molecular-targeted therapies. Increasing evidence demonstrates that dysregulation of ion channel expression and/or function is frequently and commonly observed in a variety of cancers from different origin. As a consequence, the concept of ion channels as potential membrane therapeutic targets and/or biomarkers for cancer diagnosis and prognosis has attracted growing attention. This chapter intends to comprehensively and critically review the current state-of-art ion channel dysregulation specifically focusing on head and neck cancers and to formulate the major challenges and research needs to translate this knowledge into clinical application. Based on current reported data, various voltage-gated potassium (K<sub>v</sub>) channels (i.e. K<sub>v</sub>3.4, K<sub>v</sub>10.1 and K<sub>v</sub>11.1) have been found frequently aberrantly expressed in HNSCC as well as precancerous lesions and are highlighted as clinically and biologically relevant features in both early stages of tumourigenesis and late stages of disease progression. More importantly, they also emerge as promising candidates as cancer risk markers, tumour markers and potential anti-proliferative and anti-metastatic targets for therapeutic interventions; however, the oncogenic properties seem to be independent of their ion-conducting function.</p>\",\"PeriodicalId\":21169,\"journal\":{\"name\":\"Reviews of Physiology Biochemistry and Pharmacology\",\"volume\":\"181 \",\"pages\":\"375-427\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/112_2020_38\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Physiology Biochemistry and Pharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/112_2020_38\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Physiology Biochemistry and Pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/112_2020_38","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Ion Channel Dysregulation in Head and Neck Cancers: Perspectives for Clinical Application.
Head and neck cancers are a highly complex and heterogeneous group of malignancies that involve very diverse anatomical structures and distinct aetiological factors, treatments and clinical outcomes. Among them, head and neck squamous cell carcinomas (HNSCC) are predominant and the sixth most common cancer worldwide with still low survival rates. Omic technologies have unravelled the intricacies of tumour biology, harbouring a large diversity of genetic and molecular changes to drive the carcinogenesis process. Nonetheless, this remarkable heterogeneity of molecular alterations opens up an immense opportunity to discover novel biomarkers and develop molecular-targeted therapies. Increasing evidence demonstrates that dysregulation of ion channel expression and/or function is frequently and commonly observed in a variety of cancers from different origin. As a consequence, the concept of ion channels as potential membrane therapeutic targets and/or biomarkers for cancer diagnosis and prognosis has attracted growing attention. This chapter intends to comprehensively and critically review the current state-of-art ion channel dysregulation specifically focusing on head and neck cancers and to formulate the major challenges and research needs to translate this knowledge into clinical application. Based on current reported data, various voltage-gated potassium (Kv) channels (i.e. Kv3.4, Kv10.1 and Kv11.1) have been found frequently aberrantly expressed in HNSCC as well as precancerous lesions and are highlighted as clinically and biologically relevant features in both early stages of tumourigenesis and late stages of disease progression. More importantly, they also emerge as promising candidates as cancer risk markers, tumour markers and potential anti-proliferative and anti-metastatic targets for therapeutic interventions; however, the oncogenic properties seem to be independent of their ion-conducting function.
期刊介绍:
The highly successful Reviews of Physiology, Biochemistry and Pharmacology continue to offer high-quality, in-depth reviews covering the full range of modern physiology, biochemistry and pharmacology. Leading researchers are specially invited to provide a complete understanding of the key topics in these archetypal multidisciplinary fields. In a form immediately useful to scientists, this periodical aims to filter, highlight and review the latest developments in these rapidly advancing fields.