重要内膜脂多糖-PbgA复合物的结构

IF 50.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nature Pub Date : 2020-08-12 DOI:10.1038/s41586-020-2597-x
Thomas Clairfeuille, Kerry R. Buchholz, Qingling Li, Erik Verschueren, Peter Liu, Dewakar Sangaraju, Summer Park, Cameron L. Noland, Kelly M. Storek, Nicholas N. Nickerson, Lynn Martin, Trisha Dela Vega, Anh Miu, Janina Reeder, Maria Ruiz-Gonzalez, Danielle Swem, Guanghui Han, Daniel P. DePonte, Mark S. Hunter, Cornelius Gati, Sheerin Shahidi-Latham, Min Xu, Nicholas Skelton, Benjamin D. Sellers, Elizabeth Skippington, Wendy Sandoval, Emily J. Hanan, Jian Payandeh, Steven T. Rutherford
{"title":"重要内膜脂多糖-PbgA复合物的结构","authors":"Thomas Clairfeuille, Kerry R. Buchholz, Qingling Li, Erik Verschueren, Peter Liu, Dewakar Sangaraju, Summer Park, Cameron L. Noland, Kelly M. Storek, Nicholas N. Nickerson, Lynn Martin, Trisha Dela Vega, Anh Miu, Janina Reeder, Maria Ruiz-Gonzalez, Danielle Swem, Guanghui Han, Daniel P. DePonte, Mark S. Hunter, Cornelius Gati, Sheerin Shahidi-Latham, Min Xu, Nicholas Skelton, Benjamin D. Sellers, Elizabeth Skippington, Wendy Sandoval, Emily J. Hanan, Jian Payandeh, Steven T. Rutherford","doi":"10.1038/s41586-020-2597-x","DOIUrl":null,"url":null,"abstract":"Lipopolysaccharide (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible for barrier function1,2. LPS can cause death as a result of septic shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite the clinical importance of polymyxins and the emergence of multidrug resistant strains5, our understanding of the bacterial factors that regulate LPS biogenesis is incomplete. Here we characterize the inner membrane protein PbgA and report that its depletion attenuates the virulence of Escherichia coli by reducing levels of LPS and outer membrane integrity. In contrast to previous claims that PbgA functions as a cardiolipin transporter6–9, our structural analyses and physiological studies identify a lipid A-binding motif along the periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides selectively bind to LPS in vitro and inhibit the growth of diverse Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, genetic and pharmacological experiments uncover a model in which direct periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10–12. In summary, we find that PbgA has an unexpected but essential role in the regulation of LPS biogenesis, presents a new structural basis for the selective recognition of lipids, and provides opportunities for future antibiotic discovery. Structural and physiological studies show that the inner membrane protein PbgA is a crucial sensor of lipopolysaccharide (LPS) and regulates the activity of the LPS biosynthesis enzyme LpxC.","PeriodicalId":18787,"journal":{"name":"Nature","volume":null,"pages":null},"PeriodicalIF":50.5000,"publicationDate":"2020-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1038/s41586-020-2597-x","citationCount":"54","resultStr":"{\"title\":\"Structure of the essential inner membrane lipopolysaccharide–PbgA complex\",\"authors\":\"Thomas Clairfeuille, Kerry R. Buchholz, Qingling Li, Erik Verschueren, Peter Liu, Dewakar Sangaraju, Summer Park, Cameron L. Noland, Kelly M. Storek, Nicholas N. Nickerson, Lynn Martin, Trisha Dela Vega, Anh Miu, Janina Reeder, Maria Ruiz-Gonzalez, Danielle Swem, Guanghui Han, Daniel P. DePonte, Mark S. Hunter, Cornelius Gati, Sheerin Shahidi-Latham, Min Xu, Nicholas Skelton, Benjamin D. Sellers, Elizabeth Skippington, Wendy Sandoval, Emily J. Hanan, Jian Payandeh, Steven T. Rutherford\",\"doi\":\"10.1038/s41586-020-2597-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lipopolysaccharide (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible for barrier function1,2. LPS can cause death as a result of septic shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite the clinical importance of polymyxins and the emergence of multidrug resistant strains5, our understanding of the bacterial factors that regulate LPS biogenesis is incomplete. Here we characterize the inner membrane protein PbgA and report that its depletion attenuates the virulence of Escherichia coli by reducing levels of LPS and outer membrane integrity. In contrast to previous claims that PbgA functions as a cardiolipin transporter6–9, our structural analyses and physiological studies identify a lipid A-binding motif along the periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides selectively bind to LPS in vitro and inhibit the growth of diverse Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, genetic and pharmacological experiments uncover a model in which direct periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10–12. In summary, we find that PbgA has an unexpected but essential role in the regulation of LPS biogenesis, presents a new structural basis for the selective recognition of lipids, and provides opportunities for future antibiotic discovery. Structural and physiological studies show that the inner membrane protein PbgA is a crucial sensor of lipopolysaccharide (LPS) and regulates the activity of the LPS biosynthesis enzyme LpxC.\",\"PeriodicalId\":18787,\"journal\":{\"name\":\"Nature\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":50.5000,\"publicationDate\":\"2020-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1038/s41586-020-2597-x\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.nature.com/articles/s41586-020-2597-x\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature","FirstCategoryId":"103","ListUrlMain":"https://www.nature.com/articles/s41586-020-2597-x","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 54

摘要

脂多糖(LPS)存在于革兰氏阴性细菌的外膜中,负责屏障功能1,2。LPS 可导致脓毒性休克而死亡,其脂质 A 核心是多粘菌素抗生素的靶标3,4。尽管多粘菌素具有重要的临床意义,而且出现了耐多药的菌株5,但我们对调控 LPS 生物发生的细菌因子的了解并不全面。在这里,我们描述了内膜蛋白 PbgA 的特征,并报告了其消耗可通过降低 LPS 水平和外膜完整性来减弱大肠埃希菌的毒力。与之前认为 PbgA 具有心磷脂转运功能的说法不同6-9,我们的结构分析和生理学研究确定了沿内膜周质小叶的脂质 A 结合基序。合成的 PbgA 衍生肽在体外可选择性地与 LPS 结合,并抑制包括耐多粘菌素菌株在内的多种革兰氏阴性细菌的生长。蛋白质组学、遗传学和药理学实验发现了一个模型,在该模型中,PbgA 通过调节 LpxC(一种关键的细胞质生物合成酶)的稳定性,直接在细胞质周围感知 LPS,从而协调脂质 A 的生物合成10-12。总之,我们发现 PbgA 在 LPS 生物合成的调控过程中发挥了意想不到但至关重要的作用,为脂质的选择性识别提供了新的结构基础,并为未来抗生素的发现提供了机会。结构和生理学研究表明,内膜蛋白 PbgA 是脂多糖(LPS)的一个重要传感器,并能调节 LPS 生物合成酶 LpxC 的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Structure of the essential inner membrane lipopolysaccharide–PbgA complex

Structure of the essential inner membrane lipopolysaccharide–PbgA complex
Lipopolysaccharide (LPS) resides in the outer membrane of Gram-negative bacteria where it is responsible for barrier function1,2. LPS can cause death as a result of septic shock, and its lipid A core is the target of polymyxin antibiotics3,4. Despite the clinical importance of polymyxins and the emergence of multidrug resistant strains5, our understanding of the bacterial factors that regulate LPS biogenesis is incomplete. Here we characterize the inner membrane protein PbgA and report that its depletion attenuates the virulence of Escherichia coli by reducing levels of LPS and outer membrane integrity. In contrast to previous claims that PbgA functions as a cardiolipin transporter6–9, our structural analyses and physiological studies identify a lipid A-binding motif along the periplasmic leaflet of the inner membrane. Synthetic PbgA-derived peptides selectively bind to LPS in vitro and inhibit the growth of diverse Gram-negative bacteria, including polymyxin-resistant strains. Proteomic, genetic and pharmacological experiments uncover a model in which direct periplasmic sensing of LPS by PbgA coordinates the biosynthesis of lipid A by regulating the stability of LpxC, a key cytoplasmic biosynthetic enzyme10–12. In summary, we find that PbgA has an unexpected but essential role in the regulation of LPS biogenesis, presents a new structural basis for the selective recognition of lipids, and provides opportunities for future antibiotic discovery. Structural and physiological studies show that the inner membrane protein PbgA is a crucial sensor of lipopolysaccharide (LPS) and regulates the activity of the LPS biosynthesis enzyme LpxC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature
Nature 综合性期刊-综合性期刊
CiteScore
90.00
自引率
1.20%
发文量
3652
审稿时长
3 months
期刊介绍: Nature is a prestigious international journal that publishes peer-reviewed research in various scientific and technological fields. The selection of articles is based on criteria such as originality, importance, interdisciplinary relevance, timeliness, accessibility, elegance, and surprising conclusions. In addition to showcasing significant scientific advances, Nature delivers rapid, authoritative, insightful news, and interpretation of current and upcoming trends impacting science, scientists, and the broader public. The journal serves a dual purpose: firstly, to promptly share noteworthy scientific advances and foster discussions among scientists, and secondly, to ensure the swift dissemination of scientific results globally, emphasizing their significance for knowledge, culture, and daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信