Aziz Nazha , Zhen-Huan Hu , Tao Wang , R. Coleman Lindsley , Hisham Abdel-Azim , Mahmoud Aljurf , Ulrike Bacher , Asad Bashey , Jean-Yves Cahn , Jan Cerny , Edward Copelan , Zachariah DeFilipp , Miguel Angel Diaz , Nosha Farhadfar , Shahinaz M. Gadalla , Robert Peter Gale , Biju George , Usama Gergis , Michael R. Grunwald , Betty Hamilton , Wael Saber
{"title":"骨髓增生异常综合征患者异体造血细胞移植后预后的个性化预测模型","authors":"Aziz Nazha , Zhen-Huan Hu , Tao Wang , R. Coleman Lindsley , Hisham Abdel-Azim , Mahmoud Aljurf , Ulrike Bacher , Asad Bashey , Jean-Yves Cahn , Jan Cerny , Edward Copelan , Zachariah DeFilipp , Miguel Angel Diaz , Nosha Farhadfar , Shahinaz M. Gadalla , Robert Peter Gale , Biju George , Usama Gergis , Michael R. Grunwald , Betty Hamilton , Wael Saber","doi":"10.1016/j.bbmt.2020.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Allogeneic hematopoietic stem cell transplantation (HCT) remains the only potentially curative option for myelodysplastic syndromes (MDS). Mortality after HCT is high, with deaths related to relapse or transplant-related complications. Thus, identifying patients who may or may not benefit from HCT is clinically important. We identified 1514 patients with MDS enrolled in the Center for International Blood and Marrow Transplant Research Registry and had their peripheral blood samples sequenced for the presence of 129 commonly mutated genes in myeloid malignancies. A random survival forest algorithm was used to build the model, and the accuracy of the proposed model was assessed by concordance index. The median age of the entire cohort was 59 years. The most commonly mutated genes were <em>ASXL1</em>(20%), <em>TP53</em> (19%), <em>DNMT3A</em> (15%), and <em>TET2</em> (12%). The algorithm identified the following variables prior to HCT that impacted overall survival: age, <em>TP53</em> mutations, absolute neutrophils count, cytogenetics per International Prognostic Scoring System–Revised, Karnofsky performance status, conditioning regimen, donor age, WBC count, hemoglobin, diagnosis of therapy-related MDS, peripheral blast percentage, mutations in RAS pathway, <em>JAK2</em> mutation, number of mutations/sample, <em>ZRSR2</em>, and <em>CUX1</em> mutations. Different variables impacted the risk of relapse post-transplant. The new model can provide survival probability at different time points that are specific (personalized) for a given patient based on the clinical and mutational variables that are listed above. The outcomes’ probability at different time points may aid physicians and patients in their decision regarding HCT.</p></div>","PeriodicalId":9165,"journal":{"name":"Biology of Blood and Marrow Transplantation","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bbmt.2020.08.003","citationCount":"10","resultStr":"{\"title\":\"A Personalized Prediction Model for Outcomes after Allogeneic Hematopoietic Cell Transplant in Patients with Myelodysplastic Syndromes\",\"authors\":\"Aziz Nazha , Zhen-Huan Hu , Tao Wang , R. Coleman Lindsley , Hisham Abdel-Azim , Mahmoud Aljurf , Ulrike Bacher , Asad Bashey , Jean-Yves Cahn , Jan Cerny , Edward Copelan , Zachariah DeFilipp , Miguel Angel Diaz , Nosha Farhadfar , Shahinaz M. Gadalla , Robert Peter Gale , Biju George , Usama Gergis , Michael R. Grunwald , Betty Hamilton , Wael Saber\",\"doi\":\"10.1016/j.bbmt.2020.08.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Allogeneic hematopoietic stem cell transplantation (HCT) remains the only potentially curative option for myelodysplastic syndromes (MDS). Mortality after HCT is high, with deaths related to relapse or transplant-related complications. Thus, identifying patients who may or may not benefit from HCT is clinically important. We identified 1514 patients with MDS enrolled in the Center for International Blood and Marrow Transplant Research Registry and had their peripheral blood samples sequenced for the presence of 129 commonly mutated genes in myeloid malignancies. A random survival forest algorithm was used to build the model, and the accuracy of the proposed model was assessed by concordance index. The median age of the entire cohort was 59 years. The most commonly mutated genes were <em>ASXL1</em>(20%), <em>TP53</em> (19%), <em>DNMT3A</em> (15%), and <em>TET2</em> (12%). The algorithm identified the following variables prior to HCT that impacted overall survival: age, <em>TP53</em> mutations, absolute neutrophils count, cytogenetics per International Prognostic Scoring System–Revised, Karnofsky performance status, conditioning regimen, donor age, WBC count, hemoglobin, diagnosis of therapy-related MDS, peripheral blast percentage, mutations in RAS pathway, <em>JAK2</em> mutation, number of mutations/sample, <em>ZRSR2</em>, and <em>CUX1</em> mutations. Different variables impacted the risk of relapse post-transplant. The new model can provide survival probability at different time points that are specific (personalized) for a given patient based on the clinical and mutational variables that are listed above. The outcomes’ probability at different time points may aid physicians and patients in their decision regarding HCT.</p></div>\",\"PeriodicalId\":9165,\"journal\":{\"name\":\"Biology of Blood and Marrow Transplantation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.bbmt.2020.08.003\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology of Blood and Marrow Transplantation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1083879120304717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology of Blood and Marrow Transplantation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1083879120304717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
A Personalized Prediction Model for Outcomes after Allogeneic Hematopoietic Cell Transplant in Patients with Myelodysplastic Syndromes
Allogeneic hematopoietic stem cell transplantation (HCT) remains the only potentially curative option for myelodysplastic syndromes (MDS). Mortality after HCT is high, with deaths related to relapse or transplant-related complications. Thus, identifying patients who may or may not benefit from HCT is clinically important. We identified 1514 patients with MDS enrolled in the Center for International Blood and Marrow Transplant Research Registry and had their peripheral blood samples sequenced for the presence of 129 commonly mutated genes in myeloid malignancies. A random survival forest algorithm was used to build the model, and the accuracy of the proposed model was assessed by concordance index. The median age of the entire cohort was 59 years. The most commonly mutated genes were ASXL1(20%), TP53 (19%), DNMT3A (15%), and TET2 (12%). The algorithm identified the following variables prior to HCT that impacted overall survival: age, TP53 mutations, absolute neutrophils count, cytogenetics per International Prognostic Scoring System–Revised, Karnofsky performance status, conditioning regimen, donor age, WBC count, hemoglobin, diagnosis of therapy-related MDS, peripheral blast percentage, mutations in RAS pathway, JAK2 mutation, number of mutations/sample, ZRSR2, and CUX1 mutations. Different variables impacted the risk of relapse post-transplant. The new model can provide survival probability at different time points that are specific (personalized) for a given patient based on the clinical and mutational variables that are listed above. The outcomes’ probability at different time points may aid physicians and patients in their decision regarding HCT.
期刊介绍:
Biology of Blood and Marrow Transplantation publishes original research reports, reviews, editorials, commentaries, letters to the editor, and hypotheses and is the official publication of the American Society for Transplantation and Cellular Therapy.
The journal focuses on current technology and knowledge in the interdisciplinary field of hematopoetic stem cell transplantation.