{"title":"基于代数膳食干扰估计的1型糖尿病血糖调节自适应鲁棒控制设计","authors":"Nasim Ullah, Al-Sharef Muhammad","doi":"10.1049/iet-syb.2020.0002","DOIUrl":null,"url":null,"abstract":"<div>\n <p>This study designs a robust closed-loop control algorithm for elevated blood glucose level stabilisation in type 1 diabetic patients. The control algorithm is based on a novel control action resulting from integrating algebraic meal disturbance estimator with back-stepping integral sliding mode control (BISMC) technique. The estimator shows finite time convergence leading to accurate and fast estimation of meal disturbance. Moreover, compensation of the estimated disturbance in controller provides significant reduction in chattering phenomenon, which is inherent drawback of sliding mode control (SMC). The controller is applied to one of the most reliable models of type 1 diabetic patients, named Bergman's minimal model. The effectiveness and superiority of the designed controller is shown by comparing it to classical SMC and super-twisting sliding mode control. The designed controller is subject to three different cases for detailed analysis of the controller's robustness against meal disturbance. The three cases considered are hyperglycaemia, hyperglycaemia combined with meal disturbance and three meal disturbance. The simulation results confirm superior performance of algebraic disturbance estimator based BISMC controller for all the cases mentioned above.</p>\n </div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687270/pdf/SYB2-14-200.pdf","citationCount":"2","resultStr":"{\"title\":\"Novel algebraic meal disturbance estimation based adaptive robust control design for blood glucose regulation in type 1 diabetes patients\",\"authors\":\"Nasim Ullah, Al-Sharef Muhammad\",\"doi\":\"10.1049/iet-syb.2020.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>This study designs a robust closed-loop control algorithm for elevated blood glucose level stabilisation in type 1 diabetic patients. The control algorithm is based on a novel control action resulting from integrating algebraic meal disturbance estimator with back-stepping integral sliding mode control (BISMC) technique. The estimator shows finite time convergence leading to accurate and fast estimation of meal disturbance. Moreover, compensation of the estimated disturbance in controller provides significant reduction in chattering phenomenon, which is inherent drawback of sliding mode control (SMC). The controller is applied to one of the most reliable models of type 1 diabetic patients, named Bergman's minimal model. The effectiveness and superiority of the designed controller is shown by comparing it to classical SMC and super-twisting sliding mode control. The designed controller is subject to three different cases for detailed analysis of the controller's robustness against meal disturbance. The three cases considered are hyperglycaemia, hyperglycaemia combined with meal disturbance and three meal disturbance. The simulation results confirm superior performance of algebraic disturbance estimator based BISMC controller for all the cases mentioned above.</p>\\n </div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687270/pdf/SYB2-14-200.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2020.0002\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2020.0002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Novel algebraic meal disturbance estimation based adaptive robust control design for blood glucose regulation in type 1 diabetes patients
This study designs a robust closed-loop control algorithm for elevated blood glucose level stabilisation in type 1 diabetic patients. The control algorithm is based on a novel control action resulting from integrating algebraic meal disturbance estimator with back-stepping integral sliding mode control (BISMC) technique. The estimator shows finite time convergence leading to accurate and fast estimation of meal disturbance. Moreover, compensation of the estimated disturbance in controller provides significant reduction in chattering phenomenon, which is inherent drawback of sliding mode control (SMC). The controller is applied to one of the most reliable models of type 1 diabetic patients, named Bergman's minimal model. The effectiveness and superiority of the designed controller is shown by comparing it to classical SMC and super-twisting sliding mode control. The designed controller is subject to three different cases for detailed analysis of the controller's robustness against meal disturbance. The three cases considered are hyperglycaemia, hyperglycaemia combined with meal disturbance and three meal disturbance. The simulation results confirm superior performance of algebraic disturbance estimator based BISMC controller for all the cases mentioned above.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.