{"title":"受限分子:实验与理论在小空间相遇。","authors":"Yang Yu, Julius Rebek","doi":"10.1017/S0033583520000049","DOIUrl":null,"url":null,"abstract":"<p><p>The behavior of molecules confined to small spaces is fascinating chemistry and lies at the heart of signaling processes in biology. Our approach to confinement is through reversible encapsulation of small molecules in synthetic containers. We show that confinement leads to amplified reactivities in bimolecular reactions, stabilization of otherwise reactive species, and limitation in motions that create new stereochemical arrangements. The isolation of molecules from solvent makes for manageable computations and has stimulated theorist to examine reaction details in the limited space. Transition states for reactions and rearrangements can be calculated, the effects of (de)solvation can be evaluated and the magnetic properties of the containers can be compared with experimental observations. Finally, we outline several potential applications, including entanglement chemistry and the use of isomers in data storage.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0033583520000049","citationCount":"2","resultStr":"{\"title\":\"Confined molecules: experiment meets theory in small spaces.\",\"authors\":\"Yang Yu, Julius Rebek\",\"doi\":\"10.1017/S0033583520000049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The behavior of molecules confined to small spaces is fascinating chemistry and lies at the heart of signaling processes in biology. Our approach to confinement is through reversible encapsulation of small molecules in synthetic containers. We show that confinement leads to amplified reactivities in bimolecular reactions, stabilization of otherwise reactive species, and limitation in motions that create new stereochemical arrangements. The isolation of molecules from solvent makes for manageable computations and has stimulated theorist to examine reaction details in the limited space. Transition states for reactions and rearrangements can be calculated, the effects of (de)solvation can be evaluated and the magnetic properties of the containers can be compared with experimental observations. Finally, we outline several potential applications, including entanglement chemistry and the use of isomers in data storage.</p>\",\"PeriodicalId\":20828,\"journal\":{\"name\":\"Quarterly Reviews of Biophysics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/S0033583520000049\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Reviews of Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1017/S0033583520000049\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Reviews of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1017/S0033583520000049","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Confined molecules: experiment meets theory in small spaces.
The behavior of molecules confined to small spaces is fascinating chemistry and lies at the heart of signaling processes in biology. Our approach to confinement is through reversible encapsulation of small molecules in synthetic containers. We show that confinement leads to amplified reactivities in bimolecular reactions, stabilization of otherwise reactive species, and limitation in motions that create new stereochemical arrangements. The isolation of molecules from solvent makes for manageable computations and has stimulated theorist to examine reaction details in the limited space. Transition states for reactions and rearrangements can be calculated, the effects of (de)solvation can be evaluated and the magnetic properties of the containers can be compared with experimental observations. Finally, we outline several potential applications, including entanglement chemistry and the use of isomers in data storage.
期刊介绍:
Quarterly Reviews of Biophysics covers the field of experimental and computational biophysics. Experimental biophysics span across different physics-based measurements such as optical microscopy, super-resolution imaging, electron microscopy, X-ray and neutron diffraction, spectroscopy, calorimetry, thermodynamics and their integrated uses. Computational biophysics includes theory, simulations, bioinformatics and system analysis. These biophysical methodologies are used to discover the structure, function and physiology of biological systems in varying complexities from cells, organelles, membranes, protein-nucleic acid complexes, molecular machines to molecules. The majority of reviews published are invited from authors who have made significant contributions to the field, who give critical, readable and sometimes controversial accounts of recent progress and problems in their specialty. The journal has long-standing, worldwide reputation, demonstrated by its high ranking in the ISI Science Citation Index, as a forum for general and specialized communication between biophysicists working in different areas. Thematic issues are occasionally published.