基于机器学习的中枢神经系统肿瘤的自动组织学诊断。

Q1 Medicine
CNS Oncology Pub Date : 2020-06-01 Epub Date: 2020-06-30 DOI:10.2217/cns-2020-0003
Siri Sahib S Khalsa, Todd C Hollon, Arjun Adapa, Esteban Urias, Sudharsan Srinivasan, Neil Jairath, Julianne Szczepanski, Peter Ouillette, Sandra Camelo-Piragua, Daniel A Orringer
{"title":"基于机器学习的中枢神经系统肿瘤的自动组织学诊断。","authors":"Siri Sahib S Khalsa,&nbsp;Todd C Hollon,&nbsp;Arjun Adapa,&nbsp;Esteban Urias,&nbsp;Sudharsan Srinivasan,&nbsp;Neil Jairath,&nbsp;Julianne Szczepanski,&nbsp;Peter Ouillette,&nbsp;Sandra Camelo-Piragua,&nbsp;Daniel A Orringer","doi":"10.2217/cns-2020-0003","DOIUrl":null,"url":null,"abstract":"<p><p>The discovery of a new mass involving the brain or spine typically prompts referral to a neurosurgeon to consider biopsy or surgical resection. Intraoperative decision-making depends significantly on the histologic diagnosis, which is often established when a small specimen is sent for immediate interpretation by a neuropathologist. Access to neuropathologists may be limited in resource-poor settings, which has prompted several groups to develop machine learning algorithms for automated interpretation. Most attempts have focused on fixed histopathology specimens, which do not apply in the intraoperative setting. The greatest potential for clinical impact probably lies in the automated diagnosis of intraoperative specimens. Successful future studies may use machine learning to automatically classify whole-slide intraoperative specimens among a wide array of potential diagnoses.</p>","PeriodicalId":10469,"journal":{"name":"CNS Oncology","volume":"9 2","pages":"CNS56"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2217/cns-2020-0003","citationCount":"12","resultStr":"{\"title\":\"Automated histologic diagnosis of CNS tumors with machine learning.\",\"authors\":\"Siri Sahib S Khalsa,&nbsp;Todd C Hollon,&nbsp;Arjun Adapa,&nbsp;Esteban Urias,&nbsp;Sudharsan Srinivasan,&nbsp;Neil Jairath,&nbsp;Julianne Szczepanski,&nbsp;Peter Ouillette,&nbsp;Sandra Camelo-Piragua,&nbsp;Daniel A Orringer\",\"doi\":\"10.2217/cns-2020-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The discovery of a new mass involving the brain or spine typically prompts referral to a neurosurgeon to consider biopsy or surgical resection. Intraoperative decision-making depends significantly on the histologic diagnosis, which is often established when a small specimen is sent for immediate interpretation by a neuropathologist. Access to neuropathologists may be limited in resource-poor settings, which has prompted several groups to develop machine learning algorithms for automated interpretation. Most attempts have focused on fixed histopathology specimens, which do not apply in the intraoperative setting. The greatest potential for clinical impact probably lies in the automated diagnosis of intraoperative specimens. Successful future studies may use machine learning to automatically classify whole-slide intraoperative specimens among a wide array of potential diagnoses.</p>\",\"PeriodicalId\":10469,\"journal\":{\"name\":\"CNS Oncology\",\"volume\":\"9 2\",\"pages\":\"CNS56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.2217/cns-2020-0003\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CNS Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2217/cns-2020-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CNS Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2217/cns-2020-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 12

摘要

当发现新的肿块累及大脑或脊柱时,通常会提示神经外科医生考虑活检或手术切除。术中决策在很大程度上取决于组织学诊断,这通常是在一个小样本被送到神经病理学家立即解释时确定的。在资源贫乏的环境中,神经病理学家的访问可能受到限制,这促使几个小组开发用于自动解释的机器学习算法。大多数尝试都集中在固定的组织病理学标本上,这并不适用于术中环境。对临床影响最大的可能在于术中标本的自动诊断。成功的未来研究可能会使用机器学习在广泛的潜在诊断中自动分类术中全切片标本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automated histologic diagnosis of CNS tumors with machine learning.

Automated histologic diagnosis of CNS tumors with machine learning.

The discovery of a new mass involving the brain or spine typically prompts referral to a neurosurgeon to consider biopsy or surgical resection. Intraoperative decision-making depends significantly on the histologic diagnosis, which is often established when a small specimen is sent for immediate interpretation by a neuropathologist. Access to neuropathologists may be limited in resource-poor settings, which has prompted several groups to develop machine learning algorithms for automated interpretation. Most attempts have focused on fixed histopathology specimens, which do not apply in the intraoperative setting. The greatest potential for clinical impact probably lies in the automated diagnosis of intraoperative specimens. Successful future studies may use machine learning to automatically classify whole-slide intraoperative specimens among a wide array of potential diagnoses.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CNS Oncology
CNS Oncology Medicine-Neurology (clinical)
CiteScore
3.80
自引率
0.00%
发文量
12
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信