整合化学和力学:驱动轴突生长的力量。

IF 11.4 1区 生物学 Q1 CELL BIOLOGY
Kristian Franze
{"title":"整合化学和力学:驱动轴突生长的力量。","authors":"Kristian Franze","doi":"10.1146/annurev-cellbio-100818-125157","DOIUrl":null,"url":null,"abstract":"<p><p>The brain is our most complex organ. During development, neurons extend axons, which may grow over long distances along well-defined pathways to connect to distant targets. Our current understanding of axon pathfinding is largely based on chemical signaling by attractive and repulsive guidance cues. These cues instruct motile growth cones, the leading tips of growing axons, where to turn and where to stop. However, it is not chemical signals that cause motion-motion is driven by forces. Yet our current understanding of the mechanical regulation of axon growth is very limited. In this review, I discuss the origin of the cellular forces controlling axon growth and pathfinding, and how mechanical signals encountered by growing axons may be integrated with chemical signals. This mechanochemical cross talk is an important but often overlooked aspect of cell motility that has major implications for many physiological and pathological processes involving neuronal growth.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":"36 ","pages":"61-83"},"PeriodicalIF":11.4000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-cellbio-100818-125157","citationCount":"44","resultStr":"{\"title\":\"Integrating Chemistry and Mechanics: The Forces Driving Axon Growth.\",\"authors\":\"Kristian Franze\",\"doi\":\"10.1146/annurev-cellbio-100818-125157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The brain is our most complex organ. During development, neurons extend axons, which may grow over long distances along well-defined pathways to connect to distant targets. Our current understanding of axon pathfinding is largely based on chemical signaling by attractive and repulsive guidance cues. These cues instruct motile growth cones, the leading tips of growing axons, where to turn and where to stop. However, it is not chemical signals that cause motion-motion is driven by forces. Yet our current understanding of the mechanical regulation of axon growth is very limited. In this review, I discuss the origin of the cellular forces controlling axon growth and pathfinding, and how mechanical signals encountered by growing axons may be integrated with chemical signals. This mechanochemical cross talk is an important but often overlooked aspect of cell motility that has major implications for many physiological and pathological processes involving neuronal growth.</p>\",\"PeriodicalId\":7944,\"journal\":{\"name\":\"Annual review of cell and developmental biology\",\"volume\":\"36 \",\"pages\":\"61-83\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2020-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-cellbio-100818-125157\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of cell and developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-cellbio-100818-125157\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/6/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of cell and developmental biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-cellbio-100818-125157","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 44

摘要

大脑是我们最复杂的器官。在发育过程中,神经元延伸轴突,轴突可以沿着明确的路径生长很长一段距离,连接到远处的目标。我们目前对轴突寻路的理解主要是基于吸引和排斥引导线索的化学信号。这些信号指示活动的生长锥,即轴突生长的尖端,在哪里转弯,在哪里停止。然而,不是化学信号引起运动——运动是由力驱动的。然而,我们目前对轴突生长的机械调节的理解非常有限。在这篇综述中,我讨论了控制轴突生长和寻路的细胞力的起源,以及生长轴突遇到的机械信号如何与化学信号相结合。这种机械化学串扰是细胞运动的一个重要但经常被忽视的方面,它对涉及神经元生长的许多生理和病理过程具有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrating Chemistry and Mechanics: The Forces Driving Axon Growth.

The brain is our most complex organ. During development, neurons extend axons, which may grow over long distances along well-defined pathways to connect to distant targets. Our current understanding of axon pathfinding is largely based on chemical signaling by attractive and repulsive guidance cues. These cues instruct motile growth cones, the leading tips of growing axons, where to turn and where to stop. However, it is not chemical signals that cause motion-motion is driven by forces. Yet our current understanding of the mechanical regulation of axon growth is very limited. In this review, I discuss the origin of the cellular forces controlling axon growth and pathfinding, and how mechanical signals encountered by growing axons may be integrated with chemical signals. This mechanochemical cross talk is an important but often overlooked aspect of cell motility that has major implications for many physiological and pathological processes involving neuronal growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.50
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Cell and Developmental Biology, established in 1985, comprehensively addresses major advancements in cell and developmental biology. Encompassing the structure, function, and organization of cells, as well as the development and evolution of cells in relation to both single and multicellular organisms, the journal explores models and tools of molecular biology. As of the current volume, the journal has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, making all articles published under a CC BY license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信