转基因 Btickpea 抗 Helicoverpa armigera 的成分分析。

IF 4.5 2区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Rubi Gupta, Ananta Madhab Baruah, Sumita Acharjee, Bidyut Kumar Sarmah
{"title":"转基因 Btickpea 抗 Helicoverpa armigera 的成分分析。","authors":"Rubi Gupta, Ananta Madhab Baruah, Sumita Acharjee, Bidyut Kumar Sarmah","doi":"10.1080/21645698.2020.1782147","DOIUrl":null,"url":null,"abstract":"<p><p>Transgenic chickpeas expressing high levels of a truncated version of the <i>cry1Ac</i> (tr<i>cry1Ac</i>) gene conferred complete protection to <i>Helicoverpa armigera</i> in the greenhouse. Homozygous progeny of two lines, Cry1Ac.1 and Cry1Ac.2, had similar growth pattern and other morphological characteristics, including seed yield, compared to the non-transgenic counterpart; therefore, seed compositional analysis was carried out. These selected homozygous chickpea lines were selfed for ten generations along with the non-transgenic parent under contained conditions. A comparative seed composition assessment, seed storage proteins profiling, and <i>in vitro</i> protein digestibility were performed to confirm that these lines do not have significant alterations in seed composition compared to the parent. Our analyses showed no significant difference in primary nutritional composition between transgenic and non-transgenic chickpeas. In addition, the seed storage protein profile also showed no variation between the transgenic chickpea lines. Seed protein digestibility assays using simulated gastric fluid revealed a similar rate of digestion of proteins from the transgenic tr<i>cry1Ac</i> lines compared to the non-transgenic line. Thus, our data suggest no unintended changes in the seed composition of transgenic chickpea expressing a tr<i>cry1Ac</i> gene.</p>","PeriodicalId":54282,"journal":{"name":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","volume":"11 4","pages":"262-274"},"PeriodicalIF":4.5000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7523883/pdf/KGMC_11_1782147.pdf","citationCount":"0","resultStr":"{\"title\":\"Compositional analysis of transgenic Bt-chickpea resistant to <i>Helicoverpa armigera</i>.\",\"authors\":\"Rubi Gupta, Ananta Madhab Baruah, Sumita Acharjee, Bidyut Kumar Sarmah\",\"doi\":\"10.1080/21645698.2020.1782147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transgenic chickpeas expressing high levels of a truncated version of the <i>cry1Ac</i> (tr<i>cry1Ac</i>) gene conferred complete protection to <i>Helicoverpa armigera</i> in the greenhouse. Homozygous progeny of two lines, Cry1Ac.1 and Cry1Ac.2, had similar growth pattern and other morphological characteristics, including seed yield, compared to the non-transgenic counterpart; therefore, seed compositional analysis was carried out. These selected homozygous chickpea lines were selfed for ten generations along with the non-transgenic parent under contained conditions. A comparative seed composition assessment, seed storage proteins profiling, and <i>in vitro</i> protein digestibility were performed to confirm that these lines do not have significant alterations in seed composition compared to the parent. Our analyses showed no significant difference in primary nutritional composition between transgenic and non-transgenic chickpeas. In addition, the seed storage protein profile also showed no variation between the transgenic chickpea lines. Seed protein digestibility assays using simulated gastric fluid revealed a similar rate of digestion of proteins from the transgenic tr<i>cry1Ac</i> lines compared to the non-transgenic line. Thus, our data suggest no unintended changes in the seed composition of transgenic chickpea expressing a tr<i>cry1Ac</i> gene.</p>\",\"PeriodicalId\":54282,\"journal\":{\"name\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"volume\":\"11 4\",\"pages\":\"262-274\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7523883/pdf/KGMC_11_1782147.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21645698.2020.1782147\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/6/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gm Crops & Food-Biotechnology in Agriculture and the Food Chain","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21645698.2020.1782147","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在温室中,表达高水平截短版 cry1Ac(trcry1Ac)基因的转基因鹰嘴豆对 Helicoverpa armigera 具有完全的保护作用。Cry1Ac.1 和 Cry1Ac.2 这两个品系的同源后代与非转基因品系相比,具有相似的生长模式和其他形态特征,包括种子产量,因此进行了种子成分分析。这些选定的同源鹰嘴豆品系与非转基因亲本在封闭条件下自交了 10 代。进行了种子成分比较评估、种子贮藏蛋白分析和体外蛋白质消化率分析,以确认这些品系的种子成分与亲本相比没有显著变化。我们的分析表明,转基因鹰嘴豆和非转基因鹰嘴豆的主要营养成分没有明显差异。此外,转基因鹰嘴豆品系之间的种子贮藏蛋白质也没有变化。使用模拟胃液进行的种子蛋白质消化率测定显示,与非转基因品系相比,转基因 trcry1Ac 品系的蛋白质消化率相似。因此,我们的数据表明,表达 trcry1Ac 基因的转基因鹰嘴豆的种子成分没有发生意外变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compositional analysis of transgenic Bt-chickpea resistant to Helicoverpa armigera.

Transgenic chickpeas expressing high levels of a truncated version of the cry1Ac (trcry1Ac) gene conferred complete protection to Helicoverpa armigera in the greenhouse. Homozygous progeny of two lines, Cry1Ac.1 and Cry1Ac.2, had similar growth pattern and other morphological characteristics, including seed yield, compared to the non-transgenic counterpart; therefore, seed compositional analysis was carried out. These selected homozygous chickpea lines were selfed for ten generations along with the non-transgenic parent under contained conditions. A comparative seed composition assessment, seed storage proteins profiling, and in vitro protein digestibility were performed to confirm that these lines do not have significant alterations in seed composition compared to the parent. Our analyses showed no significant difference in primary nutritional composition between transgenic and non-transgenic chickpeas. In addition, the seed storage protein profile also showed no variation between the transgenic chickpea lines. Seed protein digestibility assays using simulated gastric fluid revealed a similar rate of digestion of proteins from the transgenic trcry1Ac lines compared to the non-transgenic line. Thus, our data suggest no unintended changes in the seed composition of transgenic chickpea expressing a trcry1Ac gene.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Gm Crops & Food-Biotechnology in Agriculture and the Food Chain
Gm Crops & Food-Biotechnology in Agriculture and the Food Chain Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
8.10
自引率
10.30%
发文量
22
期刊介绍: GM Crops & Food - Biotechnology in Agriculture and the Food Chain aims to publish high quality research papers, reviews, and commentaries on a wide range of topics involving genetically modified (GM) crops in agriculture and genetically modified food. The journal provides a platform for research papers addressing fundamental questions in the development, testing, and application of transgenic crops. The journal further covers topics relating to socio-economic issues, commercialization, trade and societal issues. GM Crops & Food aims to provide an international forum on all issues related to GM crops, especially toward meaningful communication between scientists and policy-makers. GM Crops & Food will publish relevant and high-impact original research with a special focus on novelty-driven studies with the potential for application. The journal also publishes authoritative review articles on current research and policy initiatives, and commentary on broad perspectives regarding genetically modified crops. The journal serves a wide readership including scientists, breeders, and policy-makers, as well as a wider community of readers (educators, policy makers, scholars, science writers and students) interested in agriculture, medicine, biotechnology, investment, and technology transfer. Topics covered include, but are not limited to: • Production and analysis of transgenic crops • Gene insertion studies • Gene silencing • Factors affecting gene expression • Post-translational analysis • Molecular farming • Field trial analysis • Commercialization of modified crops • Safety and regulatory affairs BIOLOGICAL SCIENCE AND TECHNOLOGY • Biofuels • Data from field trials • Development of transformation technology • Elimination of pollutants (Bioremediation) • Gene silencing mechanisms • Genome Editing • Herbicide resistance • Molecular farming • Pest resistance • Plant reproduction (e.g., male sterility, hybrid breeding, apomixis) • Plants with altered composition • Tolerance to abiotic stress • Transgenesis in agriculture • Biofortification and nutrients improvement • Genomic, proteomic and bioinformatics methods used for developing GM cops ECONOMIC, POLITICAL AND SOCIAL ISSUES • Commercialization • Consumer attitudes • International bodies • National and local government policies • Public perception, intellectual property, education, (bio)ethical issues • Regulation, environmental impact and containment • Socio-economic impact • Food safety and security • Risk assessments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信