从秒到年的海洋混合变化。

IF 14.3 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
James N Moum
{"title":"从秒到年的海洋混合变化。","authors":"James N Moum","doi":"10.1146/annurev-marine-031920-122846","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past several decades, there has developed a community-wide appreciation for the importance of mixing at the smallest scales to geophysical fluid dynamics on all scales. This appreciation has spawned greater participation in the investigation of ocean mixing and new ways to measure it. These are welcome developments given the tremendous separation in scales between the basins, [Formula: see text]) m, and the turbulence, [Formula: see text]) m, and the fact that turbulence that leads to thermodynamically irreversible mixing in high-Reynolds-number geophysical flows varies by at least eight orders of magnitude in both space and time. In many cases, it is difficult to separate the dependencies because measurements are sparse, also in both space and time. Comprehensive shipboard turbulence profiling experiments supplemented by Doppler sonar current measurements provide detailed observations of the evolution of the vertical structure of upper-ocean turbulence on timescales of minutes to weeks. Recent technical developments now permit measurements of turbulence in the ocean, at least at a few locations, for extended periods. This review summarizes recent and classic results in the context of our expanding knowledge of the temporal variability of ocean mixing, beginning with a discussion of the timescales of the turbulence itself (seconds to minutes) and how turbulence-enhanced mixing varies over hours, days, tidal cycles, monsoons, seasons, and El Niño-Southern Oscillation timescales (years).</p>","PeriodicalId":55508,"journal":{"name":"Annual Review of Marine Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-marine-031920-122846","citationCount":"15","resultStr":"{\"title\":\"Variations in Ocean Mixing from Seconds to Years.\",\"authors\":\"James N Moum\",\"doi\":\"10.1146/annurev-marine-031920-122846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past several decades, there has developed a community-wide appreciation for the importance of mixing at the smallest scales to geophysical fluid dynamics on all scales. This appreciation has spawned greater participation in the investigation of ocean mixing and new ways to measure it. These are welcome developments given the tremendous separation in scales between the basins, [Formula: see text]) m, and the turbulence, [Formula: see text]) m, and the fact that turbulence that leads to thermodynamically irreversible mixing in high-Reynolds-number geophysical flows varies by at least eight orders of magnitude in both space and time. In many cases, it is difficult to separate the dependencies because measurements are sparse, also in both space and time. Comprehensive shipboard turbulence profiling experiments supplemented by Doppler sonar current measurements provide detailed observations of the evolution of the vertical structure of upper-ocean turbulence on timescales of minutes to weeks. Recent technical developments now permit measurements of turbulence in the ocean, at least at a few locations, for extended periods. This review summarizes recent and classic results in the context of our expanding knowledge of the temporal variability of ocean mixing, beginning with a discussion of the timescales of the turbulence itself (seconds to minutes) and how turbulence-enhanced mixing varies over hours, days, tidal cycles, monsoons, seasons, and El Niño-Southern Oscillation timescales (years).</p>\",\"PeriodicalId\":55508,\"journal\":{\"name\":\"Annual Review of Marine Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-marine-031920-122846\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Marine Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-marine-031920-122846\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/6/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Marine Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1146/annurev-marine-031920-122846","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 15

摘要

在过去的几十年里,整个社会已经认识到最小尺度的混合对所有尺度的地球物理流体动力学的重要性。这种认识促使更多的人参与到海洋混合的调查和新的测量方法中来。考虑到盆地(公式:见文)和湍流(公式:见文)之间在尺度上的巨大分离,以及湍流导致高雷诺数地球物理流的热力学不可逆混合在空间和时间上至少有8个数量级的变化,这些都是可喜的进展。在许多情况下,很难分离依赖关系,因为度量在空间和时间上都是稀疏的。综合船载湍流剖面实验辅以多普勒声纳电流测量,提供了在分钟到周的时间尺度上对上层海洋湍流垂直结构演变的详细观测。最近的技术发展现在允许测量海洋中的湍流,至少在一些地方,在较长时间内。这篇综述总结了最近的和经典的结果,在我们对海洋混合的时间变化的不断扩大的知识背景下,从湍流本身的时间尺度(秒到分钟)的讨论开始,以及湍流增强的混合如何在小时、天、潮汐周期、季风、季节和厄尔尼诺Niño-Southern振荡时间尺度(年)上变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variations in Ocean Mixing from Seconds to Years.

Over the past several decades, there has developed a community-wide appreciation for the importance of mixing at the smallest scales to geophysical fluid dynamics on all scales. This appreciation has spawned greater participation in the investigation of ocean mixing and new ways to measure it. These are welcome developments given the tremendous separation in scales between the basins, [Formula: see text]) m, and the turbulence, [Formula: see text]) m, and the fact that turbulence that leads to thermodynamically irreversible mixing in high-Reynolds-number geophysical flows varies by at least eight orders of magnitude in both space and time. In many cases, it is difficult to separate the dependencies because measurements are sparse, also in both space and time. Comprehensive shipboard turbulence profiling experiments supplemented by Doppler sonar current measurements provide detailed observations of the evolution of the vertical structure of upper-ocean turbulence on timescales of minutes to weeks. Recent technical developments now permit measurements of turbulence in the ocean, at least at a few locations, for extended periods. This review summarizes recent and classic results in the context of our expanding knowledge of the temporal variability of ocean mixing, beginning with a discussion of the timescales of the turbulence itself (seconds to minutes) and how turbulence-enhanced mixing varies over hours, days, tidal cycles, monsoons, seasons, and El Niño-Southern Oscillation timescales (years).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual Review of Marine Science
Annual Review of Marine Science 地学-地球化学与地球物理
CiteScore
33.60
自引率
0.60%
发文量
40
期刊介绍: The Annual Review of Marine Science, published since 2009, offers a comprehensive overview of the field. It covers various disciplines, including coastal and blue water oceanography (biological, chemical, geological, and physical), ecology, conservation, and technological advancements related to the marine environment. The journal's transition from gated to open access through Annual Reviews' Subscribe to Open program ensures that all articles are available under a CC BY license, promoting wider accessibility and dissemination of knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信