强调鸡线粒体DNA单倍群C和D的分类。

Zhuoxian Weng, Xunhe Huang
{"title":"强调鸡线粒体DNA单倍群C和D的分类。","authors":"Zhuoxian Weng, Xunhe Huang","doi":"10.1080/24701394.2020.1773452","DOIUrl":null,"url":null,"abstract":"Mitochondrial DNA (mtDNA) has been widely used in tracing the matrilineal history of domestic chickens based on haplogroup trees generated by parsimony-like method (Lan et al. 2017). However, the increasing amount of data using different nomenclature for mtDNA phylogeny complicates comparisons across studies (Miao et al. 2013; Peng et al. 2015; LuzuriagaNeira et al. 2017; Huang et al. 2018; Al-Jumaili et al. 2020; Quan et al. 2020). A standardized, hierarchical haplogroup nomenclature system can benefit studies that involve matrilineal evolutionary genetics (Wang et al. 2014; Peng et al. 2015; Schr€ oder et al. 2016; Adeola et al. 2017; Wang et al. 2019; Zhang et al. 2020). Thus, a better understanding of chicken matrilineal genealogy urgently requires such a coherent nomenclature system. The common A–I nomenclature was first produced by Liu et al. (2006), using a phylogenetic framework to identify lineages based on a large D-loop dataset. However, because the D-loop has a high mutation rate and recurrent mutations, the structure of the matrilineal genealogy is often blurred. In response, a hierarchical haplogroup tree with the higher resolution was later constructed based on both D-loop sequences and mtDNA genomes (mtgenomes) (Miao et al. 2013). This updated tree retained the original nomenclature for haplogroups A–G, but defined several new haplogroups (H, I, and W–Z), sub-haplogroups (e.g. C1, C2, and C3), and macro-haplogroups (ABZY, CD, and EFGHIWX). Additionally, the nomenclature was altered if discordant between the D-loop and mtgenome. For instance, some sequences previously in clade C based on D-loop data became haplogroup X using mtgenome data, while other sequences originally in clade D were moved to haplogroups Y and C. Several clades of red junglefowl from Thailand were previously classified into haplogroup C based on D-loop information (Miao et al. 2013), were re-clustered as new haplogroup V at the basal branch of haplogroup CD (Huang et al. 2018). The classification of haplogroup C and D in chickens often changes depending on phylogeny construction methods, resulting in controversy. For example, recent definitions of these two groups (Quan et al. 2020) conflicted with those in the previous studies (Miao et al. 2013; Huang et al. 2018). Our reanalysis categorized only 33 sequences to sub-haplogroup C1, versus 236 sequences in Quan et al. (2020), and we also found that haplogroup C frequency in Southwest China was only 2.37% (Table S1). In another study, sub-haplogroup C2 in the nomenclature of Miao et al. (2013) was classified into haplogroup D (Table S2) (Al-Jumaili et al. 2020). This change may generate confusion for future studies because haplogroups C and D are increasingly used as potential candidate markers for exploring chicken origins and expansion, particularly in northern China and the Pacific (Miao et al. 2013; Xiang et al. 2014; Dyomin et al. 2017; Herrera et al. 2017; Zhang et al. 2017; Ulfah et al. 2017; Huang et al. 2018; Al-Jumaili et al. 2020). Therefore, the classification of the two haplogroups must be clarified as quickly and as accurately as possible. An alternative","PeriodicalId":74204,"journal":{"name":"Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis","volume":"31 5","pages":"218-219"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24701394.2020.1773452","citationCount":"0","resultStr":"{\"title\":\"Highlighting the classification of mitochondrial DNA haplogroups C and D in chickens.\",\"authors\":\"Zhuoxian Weng, Xunhe Huang\",\"doi\":\"10.1080/24701394.2020.1773452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mitochondrial DNA (mtDNA) has been widely used in tracing the matrilineal history of domestic chickens based on haplogroup trees generated by parsimony-like method (Lan et al. 2017). However, the increasing amount of data using different nomenclature for mtDNA phylogeny complicates comparisons across studies (Miao et al. 2013; Peng et al. 2015; LuzuriagaNeira et al. 2017; Huang et al. 2018; Al-Jumaili et al. 2020; Quan et al. 2020). A standardized, hierarchical haplogroup nomenclature system can benefit studies that involve matrilineal evolutionary genetics (Wang et al. 2014; Peng et al. 2015; Schr€ oder et al. 2016; Adeola et al. 2017; Wang et al. 2019; Zhang et al. 2020). Thus, a better understanding of chicken matrilineal genealogy urgently requires such a coherent nomenclature system. The common A–I nomenclature was first produced by Liu et al. (2006), using a phylogenetic framework to identify lineages based on a large D-loop dataset. However, because the D-loop has a high mutation rate and recurrent mutations, the structure of the matrilineal genealogy is often blurred. In response, a hierarchical haplogroup tree with the higher resolution was later constructed based on both D-loop sequences and mtDNA genomes (mtgenomes) (Miao et al. 2013). This updated tree retained the original nomenclature for haplogroups A–G, but defined several new haplogroups (H, I, and W–Z), sub-haplogroups (e.g. C1, C2, and C3), and macro-haplogroups (ABZY, CD, and EFGHIWX). Additionally, the nomenclature was altered if discordant between the D-loop and mtgenome. For instance, some sequences previously in clade C based on D-loop data became haplogroup X using mtgenome data, while other sequences originally in clade D were moved to haplogroups Y and C. Several clades of red junglefowl from Thailand were previously classified into haplogroup C based on D-loop information (Miao et al. 2013), were re-clustered as new haplogroup V at the basal branch of haplogroup CD (Huang et al. 2018). The classification of haplogroup C and D in chickens often changes depending on phylogeny construction methods, resulting in controversy. For example, recent definitions of these two groups (Quan et al. 2020) conflicted with those in the previous studies (Miao et al. 2013; Huang et al. 2018). Our reanalysis categorized only 33 sequences to sub-haplogroup C1, versus 236 sequences in Quan et al. (2020), and we also found that haplogroup C frequency in Southwest China was only 2.37% (Table S1). In another study, sub-haplogroup C2 in the nomenclature of Miao et al. (2013) was classified into haplogroup D (Table S2) (Al-Jumaili et al. 2020). This change may generate confusion for future studies because haplogroups C and D are increasingly used as potential candidate markers for exploring chicken origins and expansion, particularly in northern China and the Pacific (Miao et al. 2013; Xiang et al. 2014; Dyomin et al. 2017; Herrera et al. 2017; Zhang et al. 2017; Ulfah et al. 2017; Huang et al. 2018; Al-Jumaili et al. 2020). Therefore, the classification of the two haplogroups must be clarified as quickly and as accurately as possible. An alternative\",\"PeriodicalId\":74204,\"journal\":{\"name\":\"Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis\",\"volume\":\"31 5\",\"pages\":\"218-219\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24701394.2020.1773452\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24701394.2020.1773452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/6/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitochondrial DNA. Part A, DNA mapping, sequencing, and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24701394.2020.1773452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/6/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highlighting the classification of mitochondrial DNA haplogroups C and D in chickens.
Mitochondrial DNA (mtDNA) has been widely used in tracing the matrilineal history of domestic chickens based on haplogroup trees generated by parsimony-like method (Lan et al. 2017). However, the increasing amount of data using different nomenclature for mtDNA phylogeny complicates comparisons across studies (Miao et al. 2013; Peng et al. 2015; LuzuriagaNeira et al. 2017; Huang et al. 2018; Al-Jumaili et al. 2020; Quan et al. 2020). A standardized, hierarchical haplogroup nomenclature system can benefit studies that involve matrilineal evolutionary genetics (Wang et al. 2014; Peng et al. 2015; Schr€ oder et al. 2016; Adeola et al. 2017; Wang et al. 2019; Zhang et al. 2020). Thus, a better understanding of chicken matrilineal genealogy urgently requires such a coherent nomenclature system. The common A–I nomenclature was first produced by Liu et al. (2006), using a phylogenetic framework to identify lineages based on a large D-loop dataset. However, because the D-loop has a high mutation rate and recurrent mutations, the structure of the matrilineal genealogy is often blurred. In response, a hierarchical haplogroup tree with the higher resolution was later constructed based on both D-loop sequences and mtDNA genomes (mtgenomes) (Miao et al. 2013). This updated tree retained the original nomenclature for haplogroups A–G, but defined several new haplogroups (H, I, and W–Z), sub-haplogroups (e.g. C1, C2, and C3), and macro-haplogroups (ABZY, CD, and EFGHIWX). Additionally, the nomenclature was altered if discordant between the D-loop and mtgenome. For instance, some sequences previously in clade C based on D-loop data became haplogroup X using mtgenome data, while other sequences originally in clade D were moved to haplogroups Y and C. Several clades of red junglefowl from Thailand were previously classified into haplogroup C based on D-loop information (Miao et al. 2013), were re-clustered as new haplogroup V at the basal branch of haplogroup CD (Huang et al. 2018). The classification of haplogroup C and D in chickens often changes depending on phylogeny construction methods, resulting in controversy. For example, recent definitions of these two groups (Quan et al. 2020) conflicted with those in the previous studies (Miao et al. 2013; Huang et al. 2018). Our reanalysis categorized only 33 sequences to sub-haplogroup C1, versus 236 sequences in Quan et al. (2020), and we also found that haplogroup C frequency in Southwest China was only 2.37% (Table S1). In another study, sub-haplogroup C2 in the nomenclature of Miao et al. (2013) was classified into haplogroup D (Table S2) (Al-Jumaili et al. 2020). This change may generate confusion for future studies because haplogroups C and D are increasingly used as potential candidate markers for exploring chicken origins and expansion, particularly in northern China and the Pacific (Miao et al. 2013; Xiang et al. 2014; Dyomin et al. 2017; Herrera et al. 2017; Zhang et al. 2017; Ulfah et al. 2017; Huang et al. 2018; Al-Jumaili et al. 2020). Therefore, the classification of the two haplogroups must be clarified as quickly and as accurately as possible. An alternative
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信