Mohammed S Bermo, David Patterson, Sam R Sharar, Hunter Hoffman, David H Lewis
{"title":"虚拟现实技术在烧伤患者影像学和治疗中的应用。","authors":"Mohammed S Bermo, David Patterson, Sam R Sharar, Hunter Hoffman, David H Lewis","doi":"10.1097/RMR.0000000000000248","DOIUrl":null,"url":null,"abstract":"<p><p>Pain from burn injuries is among the most excruciating encountered in clinical practice. Pharmacological methods often fail to achieve acceptable level of analgesia in these patients, especially during burn wound dressing and debridement. Virtual reality (VR) distraction is a promising analgesic technique that progressed significantly in the last decade with development of commercially available, low-cost, high-resolution, wide field-of-view, standalone VR devices that can be used in many clinical scenarios. VR has demonstrated clinical benefit as an adjunctive analgesic during burn wound dressing and other painful medical procedures. The technique has proven useful also in preparing patients for magnetic resonance imaging scans, particularly in claustrophobic patients. Modulation of pain-related brain activity at cortical and subcortical levels by VR, and its correlation with subjective improvement in various laboratory and clinical pain experiences has been demonstrated using multiple functional brain imaging studies including functional magnetic resonance imaging and brain perfusion single photon emission computed tomography.</p>","PeriodicalId":39381,"journal":{"name":"Topics in Magnetic Resonance Imaging","volume":"29 4","pages":"203-208"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1097/RMR.0000000000000248","citationCount":"16","resultStr":"{\"title\":\"Virtual Reality to Relieve Pain in Burn Patients Undergoing Imaging and Treatment.\",\"authors\":\"Mohammed S Bermo, David Patterson, Sam R Sharar, Hunter Hoffman, David H Lewis\",\"doi\":\"10.1097/RMR.0000000000000248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pain from burn injuries is among the most excruciating encountered in clinical practice. Pharmacological methods often fail to achieve acceptable level of analgesia in these patients, especially during burn wound dressing and debridement. Virtual reality (VR) distraction is a promising analgesic technique that progressed significantly in the last decade with development of commercially available, low-cost, high-resolution, wide field-of-view, standalone VR devices that can be used in many clinical scenarios. VR has demonstrated clinical benefit as an adjunctive analgesic during burn wound dressing and other painful medical procedures. The technique has proven useful also in preparing patients for magnetic resonance imaging scans, particularly in claustrophobic patients. Modulation of pain-related brain activity at cortical and subcortical levels by VR, and its correlation with subjective improvement in various laboratory and clinical pain experiences has been demonstrated using multiple functional brain imaging studies including functional magnetic resonance imaging and brain perfusion single photon emission computed tomography.</p>\",\"PeriodicalId\":39381,\"journal\":{\"name\":\"Topics in Magnetic Resonance Imaging\",\"volume\":\"29 4\",\"pages\":\"203-208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1097/RMR.0000000000000248\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Magnetic Resonance Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/RMR.0000000000000248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Magnetic Resonance Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/RMR.0000000000000248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Virtual Reality to Relieve Pain in Burn Patients Undergoing Imaging and Treatment.
Pain from burn injuries is among the most excruciating encountered in clinical practice. Pharmacological methods often fail to achieve acceptable level of analgesia in these patients, especially during burn wound dressing and debridement. Virtual reality (VR) distraction is a promising analgesic technique that progressed significantly in the last decade with development of commercially available, low-cost, high-resolution, wide field-of-view, standalone VR devices that can be used in many clinical scenarios. VR has demonstrated clinical benefit as an adjunctive analgesic during burn wound dressing and other painful medical procedures. The technique has proven useful also in preparing patients for magnetic resonance imaging scans, particularly in claustrophobic patients. Modulation of pain-related brain activity at cortical and subcortical levels by VR, and its correlation with subjective improvement in various laboratory and clinical pain experiences has been demonstrated using multiple functional brain imaging studies including functional magnetic resonance imaging and brain perfusion single photon emission computed tomography.
期刊介绍:
Topics in Magnetic Resonance Imaging is a leading information resource for professionals in the MRI community. This publication supplies authoritative, up-to-the-minute coverage of technical advances in this evolving field as well as practical, hands-on guidance from leading experts. Six times a year, TMRI focuses on a single timely topic of interest to radiologists. These topical issues present a variety of perspectives from top radiological authorities to provide an in-depth understanding of how MRI is being used in each area.