高密度丙烯酸酯型牙科修复材料光聚合收缩的PALS探测。

Q3 Medicine
Olha Shpotyuk, Adam Ingram, Oleh Shpotyuk, Andrii Miskiv, Nina Smolar
{"title":"高密度丙烯酸酯型牙科修复材料光聚合收缩的PALS探测。","authors":"Olha Shpotyuk,&nbsp;Adam Ingram,&nbsp;Oleh Shpotyuk,&nbsp;Andrii Miskiv,&nbsp;Nina Smolar","doi":"10.17219/pim/118394","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Using positron annihilation lifetime spectroscopy (PALS), microstructural changes in commercial dental restorative composites under light-curing polymerization were identified as a modification in mixed positron/Ps trapping, where the decay of positronium (Ps; the bound state of positrons and electrons) is caused by free-volume holes mainly in the polymer matrix, and positron trapping is defined by interfacial free-volume holes in a mixed filler-polymer environment. In loosely packed composites with a filler content of <70-75%, this process was related to the conversion of Ps-to-positron trapping.</p><p><strong>Objectives: </strong>To disclose such peculiarities in densely packed composites using the example of he commercially available acrylate-based composite ESTA-3® (ESTA Ltd., Kiev, Ukraine), which boasts a polymerization volumetric shrinkage of only 1.5%.</p><p><strong>Material and methods: </strong>ESTA‑3® was used as a commercially available acrylate-based dental restorative composite. A fast-fast coincidence system of 230‑ps resolution based on 2 photomultiplier tubes coupled to a BaF2 detector and ORTEC® electronics was used to register lifetime spectra in normal-measurement statistics. The raw PAL spectra were treated using x3-x2-CDA (coupling decomposition algorithm).</p><p><strong>Results: </strong>The annihilation process in the densely packed dental restorative composites (DRCs), as exemplified by the commercially available acrylate-based composite ESTA‑3®, is identified as mixed positron/ Ps trapping, where o-Ps decay is caused by free-volume holes in the polymer matrix and interfacial filler-polymer regions, and free positron annihilation is defined by free-volume holes between filler particles. The most adequate model-independent estimation of the polymerization volumetric shrinkage can be done using averaged positron annihilation lifetime. A meaningful description of the transformations in Psand positron-trapping sites under light curing can be developed on the basis of a semiempirical model exploring x3‑x2‑CDA. There is a strong monolithization of agglomerated filler nanoparticles in these composites, caused by the photo-induced disappearing of positron traps at the cost of Ps-decaying holes.</p><p><strong>Conclusions: </strong>Governing the polymerization void-evolution process in densely packed DRC ESTA‑3® occurs mainly in the filler sub-system as positron-to-Ps trapping conversion, which is the reason for the low corresponding volumetric shrinkage.</p>","PeriodicalId":20355,"journal":{"name":"Polimery w medycynie","volume":"49 2","pages":"49-56"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PALS probing of photopolymerization shrinkage in densely packed acrylate-type dental restorative composites.\",\"authors\":\"Olha Shpotyuk,&nbsp;Adam Ingram,&nbsp;Oleh Shpotyuk,&nbsp;Andrii Miskiv,&nbsp;Nina Smolar\",\"doi\":\"10.17219/pim/118394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Using positron annihilation lifetime spectroscopy (PALS), microstructural changes in commercial dental restorative composites under light-curing polymerization were identified as a modification in mixed positron/Ps trapping, where the decay of positronium (Ps; the bound state of positrons and electrons) is caused by free-volume holes mainly in the polymer matrix, and positron trapping is defined by interfacial free-volume holes in a mixed filler-polymer environment. In loosely packed composites with a filler content of <70-75%, this process was related to the conversion of Ps-to-positron trapping.</p><p><strong>Objectives: </strong>To disclose such peculiarities in densely packed composites using the example of he commercially available acrylate-based composite ESTA-3® (ESTA Ltd., Kiev, Ukraine), which boasts a polymerization volumetric shrinkage of only 1.5%.</p><p><strong>Material and methods: </strong>ESTA‑3® was used as a commercially available acrylate-based dental restorative composite. A fast-fast coincidence system of 230‑ps resolution based on 2 photomultiplier tubes coupled to a BaF2 detector and ORTEC® electronics was used to register lifetime spectra in normal-measurement statistics. The raw PAL spectra were treated using x3-x2-CDA (coupling decomposition algorithm).</p><p><strong>Results: </strong>The annihilation process in the densely packed dental restorative composites (DRCs), as exemplified by the commercially available acrylate-based composite ESTA‑3®, is identified as mixed positron/ Ps trapping, where o-Ps decay is caused by free-volume holes in the polymer matrix and interfacial filler-polymer regions, and free positron annihilation is defined by free-volume holes between filler particles. The most adequate model-independent estimation of the polymerization volumetric shrinkage can be done using averaged positron annihilation lifetime. A meaningful description of the transformations in Psand positron-trapping sites under light curing can be developed on the basis of a semiempirical model exploring x3‑x2‑CDA. There is a strong monolithization of agglomerated filler nanoparticles in these composites, caused by the photo-induced disappearing of positron traps at the cost of Ps-decaying holes.</p><p><strong>Conclusions: </strong>Governing the polymerization void-evolution process in densely packed DRC ESTA‑3® occurs mainly in the filler sub-system as positron-to-Ps trapping conversion, which is the reason for the low corresponding volumetric shrinkage.</p>\",\"PeriodicalId\":20355,\"journal\":{\"name\":\"Polimery w medycynie\",\"volume\":\"49 2\",\"pages\":\"49-56\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polimery w medycynie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17219/pim/118394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polimery w medycynie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17219/pim/118394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

背景:利用正电子湮灭寿命谱(PALS)技术,确定了光固化聚合下商用牙修复复合材料的微观结构变化是正电子/Ps混合捕获的修饰,其中正电子(Ps;正电子和电子的束缚态主要是由聚合物基体中的自由体积空穴引起的,而正电子的捕获则是由混合填料-聚合物环境中的界面自由体积空穴决定的。目的:以市售的丙烯酸酯基复合材料sta -3®(ESTA Ltd., Kiev, Ukraine)为例,揭示密集堆积复合材料中的这种特性,其聚合体积收缩率仅为1.5%。材料和方法:ESTA‑3®作为一种市售的丙烯酸酯基牙科修复复合材料。在正常测量统计中,使用了一个230 ps分辨率的快速重合系统,该系统基于2个光电倍增管耦合到BaF2探测器和ORTEC®电子设备。原始PAL光谱采用x3-x2-CDA(耦合分解算法)处理。结果:高密度牙科修复复合材料(DRCs)的湮灭过程,如市购的丙烯酸酯基复合材料ESTA‑3®,被确定为混合正电子/ Ps捕获,其中o-Ps衰变是由聚合物基体和填料-聚合物界面区域的自由体积空穴引起的,而自由正电子湮灭由填料颗粒之间的自由体积空穴定义。使用平均正电子湮灭寿命可以对聚合体积收缩进行最适当的模型独立估计。在探索x3‑x2‑CDA的半经验模型的基础上,可以对光固化下pds和正电子捕获位的转换进行有意义的描述。在这些复合材料中,由于光诱导的正电子陷阱以ps衰变空穴为代价而消失,导致了团聚性纳米颗粒的强单块化。结论:高密度DRC ESTA - 3®中聚合空隙演化过程主要发生在填料子系统正电子- ps俘获转换中,这是导致相应体积收缩率较低的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PALS probing of photopolymerization shrinkage in densely packed acrylate-type dental restorative composites.

Background: Using positron annihilation lifetime spectroscopy (PALS), microstructural changes in commercial dental restorative composites under light-curing polymerization were identified as a modification in mixed positron/Ps trapping, where the decay of positronium (Ps; the bound state of positrons and electrons) is caused by free-volume holes mainly in the polymer matrix, and positron trapping is defined by interfacial free-volume holes in a mixed filler-polymer environment. In loosely packed composites with a filler content of <70-75%, this process was related to the conversion of Ps-to-positron trapping.

Objectives: To disclose such peculiarities in densely packed composites using the example of he commercially available acrylate-based composite ESTA-3® (ESTA Ltd., Kiev, Ukraine), which boasts a polymerization volumetric shrinkage of only 1.5%.

Material and methods: ESTA‑3® was used as a commercially available acrylate-based dental restorative composite. A fast-fast coincidence system of 230‑ps resolution based on 2 photomultiplier tubes coupled to a BaF2 detector and ORTEC® electronics was used to register lifetime spectra in normal-measurement statistics. The raw PAL spectra were treated using x3-x2-CDA (coupling decomposition algorithm).

Results: The annihilation process in the densely packed dental restorative composites (DRCs), as exemplified by the commercially available acrylate-based composite ESTA‑3®, is identified as mixed positron/ Ps trapping, where o-Ps decay is caused by free-volume holes in the polymer matrix and interfacial filler-polymer regions, and free positron annihilation is defined by free-volume holes between filler particles. The most adequate model-independent estimation of the polymerization volumetric shrinkage can be done using averaged positron annihilation lifetime. A meaningful description of the transformations in Psand positron-trapping sites under light curing can be developed on the basis of a semiempirical model exploring x3‑x2‑CDA. There is a strong monolithization of agglomerated filler nanoparticles in these composites, caused by the photo-induced disappearing of positron traps at the cost of Ps-decaying holes.

Conclusions: Governing the polymerization void-evolution process in densely packed DRC ESTA‑3® occurs mainly in the filler sub-system as positron-to-Ps trapping conversion, which is the reason for the low corresponding volumetric shrinkage.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polimery w medycynie
Polimery w medycynie Medicine-Medicine (all)
CiteScore
3.30
自引率
0.00%
发文量
9
审稿时长
53 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信