Yinglei Zhang, Dan Li, Qiang Lu, Yu Du, Yi Lu, Xiangjia Zhu
{"title":"先天性白内障眼房水内增生状况。","authors":"Yinglei Zhang, Dan Li, Qiang Lu, Yu Du, Yi Lu, Xiangjia Zhu","doi":"10.3928/01913913-20200224-01","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To measure the concentrations of growth factors in the aqueous humor of patients with congenital cataract and to investigate the biological effects of a selected cytokine (fibroblast growth factor 4 [FGF4]) on cell proliferation, migration, and transformation.</p><p><strong>Methods: </strong>In the aqueous humor obtained from 55 eyes with congenital cataract and 55 eyes with age-related cataract, 40 growth factors were screened and selected cytokines were confirmed with enzyme-linked immunosorbent assays. After the addition of various concentrations of FGF4 (0, 2.5, 15, or 50 ng/mL) to the incubation medium, cellular functions were evaluated.</p><p><strong>Results: </strong>The concentration of FGF4 was significantly higher in the aqueous humor of patients with congenital cataract than in that of patients with age-related cataract. The human SRA01/04 lens epithelial cell line was treated with FGF4 and the cell proliferation increased significantly both dose- and time-dependently. The wound healing assay and Transwell migration assay revealed a significant increase in the migration capacity of the SRA01/04 cell line treated with 15 or 50 ng/mL of FGF4 compared with that of control cells. The intensity of immunofluorescent staining for α-smooth muscle actin increased significantly in the SRA01/04 cell line when treated with FGF4. Cytoskeletal protein (F-actin) staining showed that changes of cell morphology were induced in primary lens epithelial cells by FGF4.</p><p><strong>Conclusions: </strong>This study provides a comprehensive profile of growth factors in congenital cataract. FGF4 induced cellular changes, and may have utility as a biomarker to predict the formation of visual axis opacification. [J Pediatr Ophthalmol Strabismus. 2020;57(3):159-168.].</p>","PeriodicalId":519537,"journal":{"name":"Journal of Pediatric Ophthalmology and Strabismus","volume":" ","pages":"159-168"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Proliferative Status in the Aqueous Humor of Eyes With Congenital Cataract.\",\"authors\":\"Yinglei Zhang, Dan Li, Qiang Lu, Yu Du, Yi Lu, Xiangjia Zhu\",\"doi\":\"10.3928/01913913-20200224-01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>To measure the concentrations of growth factors in the aqueous humor of patients with congenital cataract and to investigate the biological effects of a selected cytokine (fibroblast growth factor 4 [FGF4]) on cell proliferation, migration, and transformation.</p><p><strong>Methods: </strong>In the aqueous humor obtained from 55 eyes with congenital cataract and 55 eyes with age-related cataract, 40 growth factors were screened and selected cytokines were confirmed with enzyme-linked immunosorbent assays. After the addition of various concentrations of FGF4 (0, 2.5, 15, or 50 ng/mL) to the incubation medium, cellular functions were evaluated.</p><p><strong>Results: </strong>The concentration of FGF4 was significantly higher in the aqueous humor of patients with congenital cataract than in that of patients with age-related cataract. The human SRA01/04 lens epithelial cell line was treated with FGF4 and the cell proliferation increased significantly both dose- and time-dependently. The wound healing assay and Transwell migration assay revealed a significant increase in the migration capacity of the SRA01/04 cell line treated with 15 or 50 ng/mL of FGF4 compared with that of control cells. The intensity of immunofluorescent staining for α-smooth muscle actin increased significantly in the SRA01/04 cell line when treated with FGF4. Cytoskeletal protein (F-actin) staining showed that changes of cell morphology were induced in primary lens epithelial cells by FGF4.</p><p><strong>Conclusions: </strong>This study provides a comprehensive profile of growth factors in congenital cataract. FGF4 induced cellular changes, and may have utility as a biomarker to predict the formation of visual axis opacification. [J Pediatr Ophthalmol Strabismus. 2020;57(3):159-168.].</p>\",\"PeriodicalId\":519537,\"journal\":{\"name\":\"Journal of Pediatric Ophthalmology and Strabismus\",\"volume\":\" \",\"pages\":\"159-168\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pediatric Ophthalmology and Strabismus\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3928/01913913-20200224-01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pediatric Ophthalmology and Strabismus","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3928/01913913-20200224-01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Proliferative Status in the Aqueous Humor of Eyes With Congenital Cataract.
Purpose: To measure the concentrations of growth factors in the aqueous humor of patients with congenital cataract and to investigate the biological effects of a selected cytokine (fibroblast growth factor 4 [FGF4]) on cell proliferation, migration, and transformation.
Methods: In the aqueous humor obtained from 55 eyes with congenital cataract and 55 eyes with age-related cataract, 40 growth factors were screened and selected cytokines were confirmed with enzyme-linked immunosorbent assays. After the addition of various concentrations of FGF4 (0, 2.5, 15, or 50 ng/mL) to the incubation medium, cellular functions were evaluated.
Results: The concentration of FGF4 was significantly higher in the aqueous humor of patients with congenital cataract than in that of patients with age-related cataract. The human SRA01/04 lens epithelial cell line was treated with FGF4 and the cell proliferation increased significantly both dose- and time-dependently. The wound healing assay and Transwell migration assay revealed a significant increase in the migration capacity of the SRA01/04 cell line treated with 15 or 50 ng/mL of FGF4 compared with that of control cells. The intensity of immunofluorescent staining for α-smooth muscle actin increased significantly in the SRA01/04 cell line when treated with FGF4. Cytoskeletal protein (F-actin) staining showed that changes of cell morphology were induced in primary lens epithelial cells by FGF4.
Conclusions: This study provides a comprehensive profile of growth factors in congenital cataract. FGF4 induced cellular changes, and may have utility as a biomarker to predict the formation of visual axis opacification. [J Pediatr Ophthalmol Strabismus. 2020;57(3):159-168.].