Moses Onyeabor, Rodrigo Martinez, Gavin Kurgan, Xuan Wang
{"title":"微生物生产的工程运输系统。","authors":"Moses Onyeabor, Rodrigo Martinez, Gavin Kurgan, Xuan Wang","doi":"10.1016/bs.aambs.2020.01.002","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid development in the field of metabolic engineering has enabled complex modifications of metabolic pathways to generate a diverse product portfolio. Manipulating substrate uptake and product export is an important research area in metabolic engineering. Optimization of transport systems has the potential to enhance microbial production of renewable fuels and chemicals. This chapter comprehensively reviews the transport systems critical for microbial production as well as current genetic engineering strategies to improve transport functions and thus production metrics. In addition, this chapter highlights recent advancements in engineering microbial efflux systems to enhance cellular tolerance to industrially relevant chemical stress. Lastly, future directions to address current technological gaps are discussed.</p>","PeriodicalId":7298,"journal":{"name":"Advances in applied microbiology","volume":"111 ","pages":"33-87"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/bs.aambs.2020.01.002","citationCount":"7","resultStr":"{\"title\":\"Engineering transport systems for microbial production.\",\"authors\":\"Moses Onyeabor, Rodrigo Martinez, Gavin Kurgan, Xuan Wang\",\"doi\":\"10.1016/bs.aambs.2020.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The rapid development in the field of metabolic engineering has enabled complex modifications of metabolic pathways to generate a diverse product portfolio. Manipulating substrate uptake and product export is an important research area in metabolic engineering. Optimization of transport systems has the potential to enhance microbial production of renewable fuels and chemicals. This chapter comprehensively reviews the transport systems critical for microbial production as well as current genetic engineering strategies to improve transport functions and thus production metrics. In addition, this chapter highlights recent advancements in engineering microbial efflux systems to enhance cellular tolerance to industrially relevant chemical stress. Lastly, future directions to address current technological gaps are discussed.</p>\",\"PeriodicalId\":7298,\"journal\":{\"name\":\"Advances in applied microbiology\",\"volume\":\"111 \",\"pages\":\"33-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/bs.aambs.2020.01.002\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in applied microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.aambs.2020.01.002\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/2/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in applied microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.aambs.2020.01.002","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
Engineering transport systems for microbial production.
The rapid development in the field of metabolic engineering has enabled complex modifications of metabolic pathways to generate a diverse product portfolio. Manipulating substrate uptake and product export is an important research area in metabolic engineering. Optimization of transport systems has the potential to enhance microbial production of renewable fuels and chemicals. This chapter comprehensively reviews the transport systems critical for microbial production as well as current genetic engineering strategies to improve transport functions and thus production metrics. In addition, this chapter highlights recent advancements in engineering microbial efflux systems to enhance cellular tolerance to industrially relevant chemical stress. Lastly, future directions to address current technological gaps are discussed.
期刊介绍:
Advances in Applied Microbiology offers intensive reviews of the latest techniques and discoveries in this rapidly moving field. The editors are recognized experts and the format is comprehensive and instructive.
Published since 1959, Advances in Applied Microbiology continues to be one of the most widely read and authoritative review sources in microbiology.
Recent areas covered include bacterial diversity in the human gut, protozoan grazing of freshwater biofilms, metals in yeast fermentation processes and the interpretation of host-pathogen dialogue through microarrays.