范德华磁体CrTe2†中应变诱导磁相变、磁各向异性开关和双层反铁磁天子

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2022-12-13 DOI:10.1039/D2NR04740C
Dushuo Feng, Zhong Shen, Yufei Xue, Zhihao Guan, Runhu Xiao and Changsheng Song
{"title":"范德华磁体CrTe2†中应变诱导磁相变、磁各向异性开关和双层反铁磁天子","authors":"Dushuo Feng, Zhong Shen, Yufei Xue, Zhihao Guan, Runhu Xiao and Changsheng Song","doi":"10.1039/D2NR04740C","DOIUrl":null,"url":null,"abstract":"<p >In recent years, considerable attention has been paid to the research of peculiar magnetism in two-dimensional (2D) van der Waals (vdW) layered materials. Here, we unveil the major features and deep physical mechanisms of a magnetic phase transition and magnetic anisotropy switching in monolayer CrTe<small><sub>2</sub></small> and antiferromagnetic (AFM) skyrmions in bilayer CrTe<small><sub>2</sub></small><em>via</em> first-principles calculations and micromagnetic simulations. We find that a magnetic phase transition from stripy-type AFM to ferromagnetic (FM) order can be induced by applying a tensile strain of 3%. More interestingly, the magnetic easy axis can be switched between in-plane and off-plane <em>via</em> adjusting the magnitude of strain. Besides, the topologically protected bilayer AFM skyrmion is stabilized by a large Dzyaloshinskii–Moriya interaction (DMI) of 1.43 meV and a skyrmion lattice can be induced by a magnetic field of 6.9 T at 100 K. Different from the monolayer magnetic skyrmion, the bilayer AFM skyrmion is more promising in spintronic nanodevices owing to the suppressed skyrmion Hall effect. Our findings clarify the underlying mechanisms of the strain-tunable magnetic phase transition, magnetic anisotropy switching and bilayer AFM skyrmions in vdW magnet CrTe<small><sub>2</sub></small>, and also highlight the promising applications of CrTe<small><sub>2</sub></small> in next-generation information storage devices.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Strain-induced magnetic phase transition, magnetic anisotropy switching and bilayer antiferromagnetic skyrmions in van der Waals magnet CrTe2†\",\"authors\":\"Dushuo Feng, Zhong Shen, Yufei Xue, Zhihao Guan, Runhu Xiao and Changsheng Song\",\"doi\":\"10.1039/D2NR04740C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In recent years, considerable attention has been paid to the research of peculiar magnetism in two-dimensional (2D) van der Waals (vdW) layered materials. Here, we unveil the major features and deep physical mechanisms of a magnetic phase transition and magnetic anisotropy switching in monolayer CrTe<small><sub>2</sub></small> and antiferromagnetic (AFM) skyrmions in bilayer CrTe<small><sub>2</sub></small><em>via</em> first-principles calculations and micromagnetic simulations. We find that a magnetic phase transition from stripy-type AFM to ferromagnetic (FM) order can be induced by applying a tensile strain of 3%. More interestingly, the magnetic easy axis can be switched between in-plane and off-plane <em>via</em> adjusting the magnitude of strain. Besides, the topologically protected bilayer AFM skyrmion is stabilized by a large Dzyaloshinskii–Moriya interaction (DMI) of 1.43 meV and a skyrmion lattice can be induced by a magnetic field of 6.9 T at 100 K. Different from the monolayer magnetic skyrmion, the bilayer AFM skyrmion is more promising in spintronic nanodevices owing to the suppressed skyrmion Hall effect. Our findings clarify the underlying mechanisms of the strain-tunable magnetic phase transition, magnetic anisotropy switching and bilayer AFM skyrmions in vdW magnet CrTe<small><sub>2</sub></small>, and also highlight the promising applications of CrTe<small><sub>2</sub></small> in next-generation information storage devices.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/nr/d2nr04740c\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/nr/d2nr04740c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

近年来,二维(2D)范德华(vdW)层状材料的特殊磁性研究受到了相当大的关注。在这里,我们通过第一性原理计算和微磁模拟揭示了单层CrTe2和双层CrTe2中反铁磁(AFM) skyrmions的磁相变和磁各向异性转换的主要特征和深层物理机制。我们发现,施加3%的拉伸应变可以诱导从条形AFM到铁磁(FM)阶的磁相变。更有趣的是,磁易轴可以通过调整应变的大小在平面内和平面外切换。此外,拓扑保护的双层AFM skyrmion可以通过1.43 meV的Dzyaloshinskii-Moriya相互作用(DMI)稳定,并且在100 K下6.9 T的磁场可以诱导出skyrmion晶格。与单层磁性斯基米子不同,由于抑制了斯基米子霍尔效应,双层AFM斯基米子在自旋电子纳米器件中更有应用前景。我们的研究结果阐明了vdW磁体CrTe2中应变可调谐磁相变、磁各向异性开关和双层AFM的潜在机制,并强调了CrTe2在下一代信息存储器件中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strain-induced magnetic phase transition, magnetic anisotropy switching and bilayer antiferromagnetic skyrmions in van der Waals magnet CrTe2†

Strain-induced magnetic phase transition, magnetic anisotropy switching and bilayer antiferromagnetic skyrmions in van der Waals magnet CrTe2†

In recent years, considerable attention has been paid to the research of peculiar magnetism in two-dimensional (2D) van der Waals (vdW) layered materials. Here, we unveil the major features and deep physical mechanisms of a magnetic phase transition and magnetic anisotropy switching in monolayer CrTe2 and antiferromagnetic (AFM) skyrmions in bilayer CrTe2via first-principles calculations and micromagnetic simulations. We find that a magnetic phase transition from stripy-type AFM to ferromagnetic (FM) order can be induced by applying a tensile strain of 3%. More interestingly, the magnetic easy axis can be switched between in-plane and off-plane via adjusting the magnitude of strain. Besides, the topologically protected bilayer AFM skyrmion is stabilized by a large Dzyaloshinskii–Moriya interaction (DMI) of 1.43 meV and a skyrmion lattice can be induced by a magnetic field of 6.9 T at 100 K. Different from the monolayer magnetic skyrmion, the bilayer AFM skyrmion is more promising in spintronic nanodevices owing to the suppressed skyrmion Hall effect. Our findings clarify the underlying mechanisms of the strain-tunable magnetic phase transition, magnetic anisotropy switching and bilayer AFM skyrmions in vdW magnet CrTe2, and also highlight the promising applications of CrTe2 in next-generation information storage devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信