微流体在环境中的应用。

4区 工程技术 Q2 Biochemistry, Genetics and Molecular Biology
Ting Wang, Cecilia Yu, Xing Xie
{"title":"微流体在环境中的应用。","authors":"Ting Wang,&nbsp;Cecilia Yu,&nbsp;Xing Xie","doi":"10.1007/10_2020_128","DOIUrl":null,"url":null,"abstract":"<p><p>Microfluidic and lab-on-a-chip systems have become increasingly important tools across many research fields in recent years. As a result of their small size and precise flow control, as well as their ability to enable in situ process visualization, microfluidic systems are increasingly finding applications in environmental science and engineering. Broadly speaking, their main present applications within these fields include use as sensors for water contaminant analysis (e.g., heavy metals and organic pollutants), as tools for microorganism detection (e.g., virus and bacteria), and as platforms for the investigation of environment-related problems (e.g., bacteria electron transfer and biofilm formation). This chapter aims to review the applications of microfluidics in environmental science and engineering - with a particular focus on the foregoing topics. The advantages and limitations of microfluidics when compared to traditional methods are also surveyed, and several perspectives on the future of research and development into microfluidics for environmental applications are offered.</p>","PeriodicalId":7198,"journal":{"name":"Advances in biochemical engineering/biotechnology","volume":"179 ","pages":"267-290"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/10_2020_128","citationCount":"13","resultStr":"{\"title\":\"Microfluidics for Environmental Applications.\",\"authors\":\"Ting Wang,&nbsp;Cecilia Yu,&nbsp;Xing Xie\",\"doi\":\"10.1007/10_2020_128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microfluidic and lab-on-a-chip systems have become increasingly important tools across many research fields in recent years. As a result of their small size and precise flow control, as well as their ability to enable in situ process visualization, microfluidic systems are increasingly finding applications in environmental science and engineering. Broadly speaking, their main present applications within these fields include use as sensors for water contaminant analysis (e.g., heavy metals and organic pollutants), as tools for microorganism detection (e.g., virus and bacteria), and as platforms for the investigation of environment-related problems (e.g., bacteria electron transfer and biofilm formation). This chapter aims to review the applications of microfluidics in environmental science and engineering - with a particular focus on the foregoing topics. The advantages and limitations of microfluidics when compared to traditional methods are also surveyed, and several perspectives on the future of research and development into microfluidics for environmental applications are offered.</p>\",\"PeriodicalId\":7198,\"journal\":{\"name\":\"Advances in biochemical engineering/biotechnology\",\"volume\":\"179 \",\"pages\":\"267-290\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/10_2020_128\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in biochemical engineering/biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/10_2020_128\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biochemical engineering/biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/10_2020_128","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 13

摘要

近年来,微流控和芯片实验室系统已成为许多研究领域日益重要的工具。由于其小尺寸和精确的流量控制,以及它们能够实现现场过程可视化的能力,微流体系统越来越多地在环境科学和工程中得到应用。从广义上讲,它们目前在这些领域的主要应用包括用作水污染物分析的传感器(例如,重金属和有机污染物),作为微生物检测的工具(例如,病毒和细菌),以及作为研究环境相关问题的平台(例如,细菌电子转移和生物膜形成)。本章旨在回顾微流体在环境科学与工程中的应用,并特别关注上述主题。本文还分析了微流控技术与传统方法相比的优点和局限性,并对微流控技术在环境领域的应用前景进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microfluidics for Environmental Applications.

Microfluidic and lab-on-a-chip systems have become increasingly important tools across many research fields in recent years. As a result of their small size and precise flow control, as well as their ability to enable in situ process visualization, microfluidic systems are increasingly finding applications in environmental science and engineering. Broadly speaking, their main present applications within these fields include use as sensors for water contaminant analysis (e.g., heavy metals and organic pollutants), as tools for microorganism detection (e.g., virus and bacteria), and as platforms for the investigation of environment-related problems (e.g., bacteria electron transfer and biofilm formation). This chapter aims to review the applications of microfluidics in environmental science and engineering - with a particular focus on the foregoing topics. The advantages and limitations of microfluidics when compared to traditional methods are also surveyed, and several perspectives on the future of research and development into microfluidics for environmental applications are offered.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in biochemical engineering/biotechnology
Advances in biochemical engineering/biotechnology 工程技术-生物工程与应用微生物
CiteScore
5.70
自引率
0.00%
发文量
29
期刊介绍: Advances in Biochemical Engineering/Biotechnology reviews actual trends in modern biotechnology. Its aim is to cover all aspects of this interdisciplinary technology where knowledge, methods and expertise are required for chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science. Special volumes are dedicated to selected topics which focus on new biotechnological products and new processes for their synthesis and purification. They give the state-of-the-art of a topic in a comprehensive way thus being a valuable source for the next 3 - 5 years. It also discusses new discoveries and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信