Braeden A Terpou, Maria Densmore, Jean Théberge, Janine Thome, Paul Frewen, Margaret C McKinnon, Ruth A Lanius
{"title":"威胁性自我:创伤后应激障碍患者在潜意识创伤相关处理过程中中脑与皮层中线和顶叶区域的功能连接。","authors":"Braeden A Terpou, Maria Densmore, Jean Théberge, Janine Thome, Paul Frewen, Margaret C McKinnon, Ruth A Lanius","doi":"10.1177/2470547019871369","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The innate alarm system consists of a subcortical network of interconnected midbrain, lower brainstem, and thalamic nuclei, which together mediate the detection of evolutionarily-relevant stimuli. The periaqueductal gray is a midbrain structure innervated by the innate alarm system that coordinates the expression of defensive states following threat detection. In participants with post-traumatic stress disorder, the periaqueductal gray displays overactivation during the subliminal presentation of trauma-related stimuli as well as altered resting-state functional connectivity. Aberrant functional connectivity is also reported in post-traumatic stress disorder for the default-mode network, a large-scale brain network recruited during self-referential processing and autobiographical memory. Here, research lacks investigation on the extent to which functional interactions are displayed between the midbrain and the large-scale cortical networks in post-traumatic stress disorder.</p><p><strong>Methods: </strong>Using a subliminal threat presentation paradigm, we investigated psycho-physiological interactions during functional neuroimaging in participants with post-traumatic stress disorder (n = 26) and healthy control subjects (n = 20). Functional connectivity of the periaqueductal gray was investigated across the whole-brain of each participant during subliminal exposure to trauma-related and neutral word stimuli.</p><p><strong>Results: </strong>As compared to controls during subliminal threat presentation, the post-traumatic stress disorder group showed significantly greater periaqueductal gray functional connectivity with regions of the default-mode network (i.e., angular gyrus, precuneus, superior frontal gyrus). Moreover, multiple regression analyses revealed that the functional connectivity between the periaqueductal gray and the regions of the default-mode network correlated positively to symptoms of avoidance and state dissociation in post-traumatic stress disorder.</p><p><strong>Conclusion: </strong>Given that the periaqueductal gray engages the expression of defensive states, stronger midbrain functional coupling with the default-mode network may have clinical implications to self-referential and trauma-related processing in participants with post-traumatic stress disorder.</p>","PeriodicalId":52315,"journal":{"name":"Chronic Stress","volume":" ","pages":"2470547019871369"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219912/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Threatful Self: Midbrain Functional Connectivity to Cortical Midline and Parietal Regions During Subliminal Trauma-Related Processing in PTSD.\",\"authors\":\"Braeden A Terpou, Maria Densmore, Jean Théberge, Janine Thome, Paul Frewen, Margaret C McKinnon, Ruth A Lanius\",\"doi\":\"10.1177/2470547019871369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The innate alarm system consists of a subcortical network of interconnected midbrain, lower brainstem, and thalamic nuclei, which together mediate the detection of evolutionarily-relevant stimuli. The periaqueductal gray is a midbrain structure innervated by the innate alarm system that coordinates the expression of defensive states following threat detection. In participants with post-traumatic stress disorder, the periaqueductal gray displays overactivation during the subliminal presentation of trauma-related stimuli as well as altered resting-state functional connectivity. Aberrant functional connectivity is also reported in post-traumatic stress disorder for the default-mode network, a large-scale brain network recruited during self-referential processing and autobiographical memory. Here, research lacks investigation on the extent to which functional interactions are displayed between the midbrain and the large-scale cortical networks in post-traumatic stress disorder.</p><p><strong>Methods: </strong>Using a subliminal threat presentation paradigm, we investigated psycho-physiological interactions during functional neuroimaging in participants with post-traumatic stress disorder (n = 26) and healthy control subjects (n = 20). Functional connectivity of the periaqueductal gray was investigated across the whole-brain of each participant during subliminal exposure to trauma-related and neutral word stimuli.</p><p><strong>Results: </strong>As compared to controls during subliminal threat presentation, the post-traumatic stress disorder group showed significantly greater periaqueductal gray functional connectivity with regions of the default-mode network (i.e., angular gyrus, precuneus, superior frontal gyrus). Moreover, multiple regression analyses revealed that the functional connectivity between the periaqueductal gray and the regions of the default-mode network correlated positively to symptoms of avoidance and state dissociation in post-traumatic stress disorder.</p><p><strong>Conclusion: </strong>Given that the periaqueductal gray engages the expression of defensive states, stronger midbrain functional coupling with the default-mode network may have clinical implications to self-referential and trauma-related processing in participants with post-traumatic stress disorder.</p>\",\"PeriodicalId\":52315,\"journal\":{\"name\":\"Chronic Stress\",\"volume\":\" \",\"pages\":\"2470547019871369\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219912/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chronic Stress\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2470547019871369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Psychology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chronic Stress","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2470547019871369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Psychology","Score":null,"Total":0}
The Threatful Self: Midbrain Functional Connectivity to Cortical Midline and Parietal Regions During Subliminal Trauma-Related Processing in PTSD.
Background: The innate alarm system consists of a subcortical network of interconnected midbrain, lower brainstem, and thalamic nuclei, which together mediate the detection of evolutionarily-relevant stimuli. The periaqueductal gray is a midbrain structure innervated by the innate alarm system that coordinates the expression of defensive states following threat detection. In participants with post-traumatic stress disorder, the periaqueductal gray displays overactivation during the subliminal presentation of trauma-related stimuli as well as altered resting-state functional connectivity. Aberrant functional connectivity is also reported in post-traumatic stress disorder for the default-mode network, a large-scale brain network recruited during self-referential processing and autobiographical memory. Here, research lacks investigation on the extent to which functional interactions are displayed between the midbrain and the large-scale cortical networks in post-traumatic stress disorder.
Methods: Using a subliminal threat presentation paradigm, we investigated psycho-physiological interactions during functional neuroimaging in participants with post-traumatic stress disorder (n = 26) and healthy control subjects (n = 20). Functional connectivity of the periaqueductal gray was investigated across the whole-brain of each participant during subliminal exposure to trauma-related and neutral word stimuli.
Results: As compared to controls during subliminal threat presentation, the post-traumatic stress disorder group showed significantly greater periaqueductal gray functional connectivity with regions of the default-mode network (i.e., angular gyrus, precuneus, superior frontal gyrus). Moreover, multiple regression analyses revealed that the functional connectivity between the periaqueductal gray and the regions of the default-mode network correlated positively to symptoms of avoidance and state dissociation in post-traumatic stress disorder.
Conclusion: Given that the periaqueductal gray engages the expression of defensive states, stronger midbrain functional coupling with the default-mode network may have clinical implications to self-referential and trauma-related processing in participants with post-traumatic stress disorder.