内皮内向矫正 K+ 通道是剪切应力诱导的机械传导的关键组成部分。

4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology
Current topics in membranes Pub Date : 2020-01-01 Epub Date: 2020-03-23 DOI:10.1016/bs.ctm.2020.02.002
Ibra S Fancher, Irena Levitan
{"title":"内皮内向矫正 K+ 通道是剪切应力诱导的机械传导的关键组成部分。","authors":"Ibra S Fancher, Irena Levitan","doi":"10.1016/bs.ctm.2020.02.002","DOIUrl":null,"url":null,"abstract":"<p><p>It has been recognized for decades that fluid shear stress plays a major role in vascular function. Acting on the endothelium shear stress induces vasorelaxation of resistance arteries and plays a major role in the propensity of the major arteries to atherosclerosis. Many elements of shear-induced signaling have been identified yet we are just beginning to decipher the roles that mechanosensitive ion channels may play in the signaling pathways initiated by shear stress. Endothelial inwardly-rectifying K<sup>+</sup> channels were identified as potential primary mechanosensors in the late 1980s yet until our recent works, highlighted in the forthcoming chapter, the functional effect of a shear-activated K<sup>+</sup> current was completely unknown. In this chapter, we present the physiological effects of shear stress in arteries in health and disease and highlight the most prevalent of today's investigated mechanosensitive ion channels. Ultimately, we focus on Kir2.1 channels and discuss in detail our findings regarding the downstream signaling events that are induced by shear-activated endothelial Kir2.1 channels. Most importantly, we examine our findings regarding hypercholesterolemia-induced inhibition of Kir channel shear-sensitivity and the impact on endothelial function in the context of flow (shear)-mediated vasodilation and atherosclerosis.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"59-88"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endothelial inwardly-rectifying K<sup>+</sup> channels as a key component of shear stress-induced mechanotransduction.\",\"authors\":\"Ibra S Fancher, Irena Levitan\",\"doi\":\"10.1016/bs.ctm.2020.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It has been recognized for decades that fluid shear stress plays a major role in vascular function. Acting on the endothelium shear stress induces vasorelaxation of resistance arteries and plays a major role in the propensity of the major arteries to atherosclerosis. Many elements of shear-induced signaling have been identified yet we are just beginning to decipher the roles that mechanosensitive ion channels may play in the signaling pathways initiated by shear stress. Endothelial inwardly-rectifying K<sup>+</sup> channels were identified as potential primary mechanosensors in the late 1980s yet until our recent works, highlighted in the forthcoming chapter, the functional effect of a shear-activated K<sup>+</sup> current was completely unknown. In this chapter, we present the physiological effects of shear stress in arteries in health and disease and highlight the most prevalent of today's investigated mechanosensitive ion channels. Ultimately, we focus on Kir2.1 channels and discuss in detail our findings regarding the downstream signaling events that are induced by shear-activated endothelial Kir2.1 channels. Most importantly, we examine our findings regarding hypercholesterolemia-induced inhibition of Kir channel shear-sensitivity and the impact on endothelial function in the context of flow (shear)-mediated vasodilation and atherosclerosis.</p>\",\"PeriodicalId\":11029,\"journal\":{\"name\":\"Current topics in membranes\",\"volume\":\" \",\"pages\":\"59-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current topics in membranes\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/bs.ctm.2020.02.002\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/3/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current topics in membranes","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/bs.ctm.2020.02.002","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/3/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

几十年来,人们一直认为流体剪切应力在血管功能中起着重要作用。剪切应力作用于血管内皮,诱导阻力动脉的血管舒张,并对大动脉的动脉粥样硬化倾向起着重要作用。剪切力诱导信号传导的许多要素已被确定,但我们才刚刚开始破译机械敏感性离子通道在剪切力启动的信号传导途径中可能发挥的作用。20 世纪 80 年代末,内皮内向纠偏 K+ 通道被确定为潜在的主要机械传感器,但直到我们最近的研究(将在下一章重点介绍),剪切力激活的 K+ 电流的功能效应还完全不为人知。在本章中,我们将介绍剪切应力对动脉健康和疾病的生理影响,并重点介绍当今研究的最普遍的机械敏感性离子通道。最后,我们将重点放在 Kir2.1 通道上,并详细讨论我们对剪切力激活的内皮 Kir2.1 通道所诱导的下游信号事件的研究结果。最重要的是,我们研究了高胆固醇血症诱导的 Kir 通道剪切敏感性抑制以及在流动(剪切)介导的血管扩张和动脉粥样硬化背景下对内皮功能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Endothelial inwardly-rectifying K+ channels as a key component of shear stress-induced mechanotransduction.

It has been recognized for decades that fluid shear stress plays a major role in vascular function. Acting on the endothelium shear stress induces vasorelaxation of resistance arteries and plays a major role in the propensity of the major arteries to atherosclerosis. Many elements of shear-induced signaling have been identified yet we are just beginning to decipher the roles that mechanosensitive ion channels may play in the signaling pathways initiated by shear stress. Endothelial inwardly-rectifying K+ channels were identified as potential primary mechanosensors in the late 1980s yet until our recent works, highlighted in the forthcoming chapter, the functional effect of a shear-activated K+ current was completely unknown. In this chapter, we present the physiological effects of shear stress in arteries in health and disease and highlight the most prevalent of today's investigated mechanosensitive ion channels. Ultimately, we focus on Kir2.1 channels and discuss in detail our findings regarding the downstream signaling events that are induced by shear-activated endothelial Kir2.1 channels. Most importantly, we examine our findings regarding hypercholesterolemia-induced inhibition of Kir channel shear-sensitivity and the impact on endothelial function in the context of flow (shear)-mediated vasodilation and atherosclerosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current topics in membranes
Current topics in membranes 生物-生化与分子生物学
CiteScore
3.50
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: Current Topics in Membranes provides a systematic, comprehensive, and rigorous approach to specific topics relevant to the study of cellular membranes. Each volume is a guest edited compendium of membrane biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信