吸附物诱导的结构演化改变了Rh/Fe3O4(001)模型催化剂上CO氧化的机理

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2020-02-26 DOI:10.1039/C9NR10087C
Zdenek Jakub, Jan Hulva, Paul T. P. Ryan, David A. Duncan, David J. Payne, Roland Bliem, Manuel Ulreich, Patrick Hofegger, Florian Kraushofer, Matthias Meier, Michael Schmid, Ulrike Diebold and Gareth S. Parkinson
{"title":"吸附物诱导的结构演化改变了Rh/Fe3O4(001)模型催化剂上CO氧化的机理","authors":"Zdenek Jakub, Jan Hulva, Paul T. P. Ryan, David A. Duncan, David J. Payne, Roland Bliem, Manuel Ulreich, Patrick Hofegger, Florian Kraushofer, Matthias Meier, Michael Schmid, Ulrike Diebold and Gareth S. Parkinson","doi":"10.1039/C9NR10087C","DOIUrl":null,"url":null,"abstract":"<p >The structure of a catalyst often changes in reactive environments, and following the structural evolution is crucial for the identification of the catalyst's active phase and reaction mechanism. Here we present an atomic-scale study of CO oxidation on a model Rh/Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>(001) “single-atom” catalyst, which has a very different evolution depending on which of the two reactants, O<small><sub>2</sub></small> or CO, is adsorbed first. Using temperature-programmed desorption (TPD) combined with scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), we show that O<small><sub>2</sub></small> destabilizes Rh atoms, leading to the formation of Rh<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small> clusters; these catalyze CO oxidation <em>via</em> a Langmuir–Hinshelwood mechanism at temperatures as low as 200 K. If CO adsorbs first, the system is poisoned for direct interaction with O<small><sub>2</sub></small>, and CO oxidation is dominated by a Mars-van-Krevelen pathway at 480 K.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 10","pages":" 5866-5875"},"PeriodicalIF":5.8000,"publicationDate":"2020-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1039/C9NR10087C","citationCount":"14","resultStr":"{\"title\":\"Adsorbate-induced structural evolution changes the mechanism of CO oxidation on a Rh/Fe3O4(001) model catalyst†\",\"authors\":\"Zdenek Jakub, Jan Hulva, Paul T. P. Ryan, David A. Duncan, David J. Payne, Roland Bliem, Manuel Ulreich, Patrick Hofegger, Florian Kraushofer, Matthias Meier, Michael Schmid, Ulrike Diebold and Gareth S. Parkinson\",\"doi\":\"10.1039/C9NR10087C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The structure of a catalyst often changes in reactive environments, and following the structural evolution is crucial for the identification of the catalyst's active phase and reaction mechanism. Here we present an atomic-scale study of CO oxidation on a model Rh/Fe<small><sub>3</sub></small>O<small><sub>4</sub></small>(001) “single-atom” catalyst, which has a very different evolution depending on which of the two reactants, O<small><sub>2</sub></small> or CO, is adsorbed first. Using temperature-programmed desorption (TPD) combined with scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), we show that O<small><sub>2</sub></small> destabilizes Rh atoms, leading to the formation of Rh<small><sub><em>x</em></sub></small>O<small><sub><em>y</em></sub></small> clusters; these catalyze CO oxidation <em>via</em> a Langmuir–Hinshelwood mechanism at temperatures as low as 200 K. If CO adsorbs first, the system is poisoned for direct interaction with O<small><sub>2</sub></small>, and CO oxidation is dominated by a Mars-van-Krevelen pathway at 480 K.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 10\",\"pages\":\" 5866-5875\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2020-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1039/C9NR10087C\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2020/nr/c9nr10087c\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2020/nr/c9nr10087c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 14

摘要

催化剂的结构在反应环境中经常发生变化,跟踪催化剂的结构演变对于确定催化剂的活性相和反应机理至关重要。在这里,我们提出了一项在模型Rh/Fe3O4(001)“单原子”催化剂上的CO氧化的原子尺度研究,该催化剂根据首先吸附O2或CO两种反应物中的哪一种具有非常不同的演化。利用程序升温解吸(TPD)、扫描隧道显微镜(STM)和x射线光电子能谱(XPS),我们发现O2使Rh原子不稳定,导致RhxOy簇的形成;它们在低至200 K的温度下通过Langmuir-Hinshelwood机制催化CO氧化。如果CO首先吸附,则系统因与O2直接相互作用而中毒,并且CO在480 K时主要通过Mars-van-Krevelen途径氧化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Adsorbate-induced structural evolution changes the mechanism of CO oxidation on a Rh/Fe3O4(001) model catalyst†

Adsorbate-induced structural evolution changes the mechanism of CO oxidation on a Rh/Fe3O4(001) model catalyst†

The structure of a catalyst often changes in reactive environments, and following the structural evolution is crucial for the identification of the catalyst's active phase and reaction mechanism. Here we present an atomic-scale study of CO oxidation on a model Rh/Fe3O4(001) “single-atom” catalyst, which has a very different evolution depending on which of the two reactants, O2 or CO, is adsorbed first. Using temperature-programmed desorption (TPD) combined with scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS), we show that O2 destabilizes Rh atoms, leading to the formation of RhxOy clusters; these catalyze CO oxidation via a Langmuir–Hinshelwood mechanism at temperatures as low as 200 K. If CO adsorbs first, the system is poisoned for direct interaction with O2, and CO oxidation is dominated by a Mars-van-Krevelen pathway at 480 K.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信