{"title":"活菌戊糖Pediococcus qu19对餐后血糖升高的降低作用。","authors":"Miki Fujiwara, Daichi Kuwahara, Masahiro Hayashi, Takeshi Zendo, Masao Sato, Jiro Nakayama, Kenji Sonomoto","doi":"10.12938/bmfh.19-041","DOIUrl":null,"url":null,"abstract":"<p><p>In the present study, we investigated the glucose-decreasing action of lactic acid bacteria (LAB). The finding of this study could be helpful for people in controlling their blood sugar levels. The LAB candidate was isolated from a Japanese fermented food and identified as <i>Pediococcus pentosaceus</i> by an analysis of its genome sequence. Postprandial blood glucose elevation was investigated using oral starch tolerance tests in mice. Normal mice were fed starch and lyophilized cells of <i>P. pentosaceus</i> QU 19 at the same time. Even without pre-administration of <i>P. pentosaceus</i> QU 19, elevation of the blood glucose level was significantly suppressed by the intake of <i>P. pentosaceus</i> QU 19 at the same time as oral administration of starch. According to the results for its survival in simulated digestive juice and the reduction of blood glucose level in mice, <i>P. pentosaceus</i> QU 19 has potential hypoglycemic activity. <i>In vitro</i> measurements revealed that the glucose-decreasing action of <i>P. pentosaceus</i> QU 19 is probably caused by the glucose assimilation of the strain, not the inhibition of carbohydrate-splitting enzymes which has been reported for other LABs previously. These findings indicate that specific strains of LAB, especially <i>P. pentosaceus</i> QU 19, and foods fermented by LAB may be beneficial for people who must manage glucose ingestion.</p>","PeriodicalId":8867,"journal":{"name":"Bioscience of Microbiota, Food and Health","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.12938/bmfh.19-041","citationCount":"6","resultStr":"{\"title\":\"Lowering effect of viable <i>Pediococcus pentosaceus</i> QU 19 on the rise in postprandial glucose.\",\"authors\":\"Miki Fujiwara, Daichi Kuwahara, Masahiro Hayashi, Takeshi Zendo, Masao Sato, Jiro Nakayama, Kenji Sonomoto\",\"doi\":\"10.12938/bmfh.19-041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the present study, we investigated the glucose-decreasing action of lactic acid bacteria (LAB). The finding of this study could be helpful for people in controlling their blood sugar levels. The LAB candidate was isolated from a Japanese fermented food and identified as <i>Pediococcus pentosaceus</i> by an analysis of its genome sequence. Postprandial blood glucose elevation was investigated using oral starch tolerance tests in mice. Normal mice were fed starch and lyophilized cells of <i>P. pentosaceus</i> QU 19 at the same time. Even without pre-administration of <i>P. pentosaceus</i> QU 19, elevation of the blood glucose level was significantly suppressed by the intake of <i>P. pentosaceus</i> QU 19 at the same time as oral administration of starch. According to the results for its survival in simulated digestive juice and the reduction of blood glucose level in mice, <i>P. pentosaceus</i> QU 19 has potential hypoglycemic activity. <i>In vitro</i> measurements revealed that the glucose-decreasing action of <i>P. pentosaceus</i> QU 19 is probably caused by the glucose assimilation of the strain, not the inhibition of carbohydrate-splitting enzymes which has been reported for other LABs previously. These findings indicate that specific strains of LAB, especially <i>P. pentosaceus</i> QU 19, and foods fermented by LAB may be beneficial for people who must manage glucose ingestion.</p>\",\"PeriodicalId\":8867,\"journal\":{\"name\":\"Bioscience of Microbiota, Food and Health\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.12938/bmfh.19-041\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience of Microbiota, Food and Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12938/bmfh.19-041\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience of Microbiota, Food and Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12938/bmfh.19-041","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Lowering effect of viable Pediococcus pentosaceus QU 19 on the rise in postprandial glucose.
In the present study, we investigated the glucose-decreasing action of lactic acid bacteria (LAB). The finding of this study could be helpful for people in controlling their blood sugar levels. The LAB candidate was isolated from a Japanese fermented food and identified as Pediococcus pentosaceus by an analysis of its genome sequence. Postprandial blood glucose elevation was investigated using oral starch tolerance tests in mice. Normal mice were fed starch and lyophilized cells of P. pentosaceus QU 19 at the same time. Even without pre-administration of P. pentosaceus QU 19, elevation of the blood glucose level was significantly suppressed by the intake of P. pentosaceus QU 19 at the same time as oral administration of starch. According to the results for its survival in simulated digestive juice and the reduction of blood glucose level in mice, P. pentosaceus QU 19 has potential hypoglycemic activity. In vitro measurements revealed that the glucose-decreasing action of P. pentosaceus QU 19 is probably caused by the glucose assimilation of the strain, not the inhibition of carbohydrate-splitting enzymes which has been reported for other LABs previously. These findings indicate that specific strains of LAB, especially P. pentosaceus QU 19, and foods fermented by LAB may be beneficial for people who must manage glucose ingestion.
期刊介绍:
Bioscience of Microbiota, Food and Health (BMFH) is a peer-reviewed scientific journal with a specific area of focus: intestinal microbiota of human and animals, lactic acid bacteria (LAB) and food immunology and food function. BMFH contains Full papers, Notes, Reviews and Letters to the editor in all areas dealing with intestinal microbiota, LAB and food immunology and food function. BMFH takes a multidisciplinary approach and focuses on a broad spectrum of issues.