共价有机框架的分离。

IF 7.6 2区 工程技术 Q1 CHEMISTRY, APPLIED
Saikat Das, Jie Feng, Wei Wang
{"title":"共价有机框架的分离。","authors":"Saikat Das,&nbsp;Jie Feng,&nbsp;Wei Wang","doi":"10.1146/annurev-chembioeng-112019-084830","DOIUrl":null,"url":null,"abstract":"<p><p>In the wake of sustainable development, materials research is going through a green revolution that is putting energy-efficient and environmentally friendly materials and methods in the limelight. In this quest for greener alternatives, covalent organic frameworks (COFs) have emerged as a new generation of designable crystalline porous polymers for a wide array of clean-energy and environmental applications. In this contribution, we categorically review the merits and shortcomings of COF bulk powders, nanosheets, freestanding thin films/membranes, and membranes on porous supports in various separation processes, including separation of gases, pervaporation, organic solvent nanofiltration, water purification, radionuclide sequestration, and chiral separations, with particular reference to COF material pore size, host-guest interactions, stability, selectivity, and permeability. This review covers the fabrication strategies of nanosheets, films, and membranes, as well as performance parameters, and provides an overview of the separation landscape with COFs in relation to other porous polymers, while seeking to interpret the future research opportunities in this field.</p>","PeriodicalId":8234,"journal":{"name":"Annual review of chemical and biomolecular engineering","volume":"11 ","pages":"131-153"},"PeriodicalIF":7.6000,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-chembioeng-112019-084830","citationCount":"29","resultStr":"{\"title\":\"Covalent Organic Frameworks in Separation.\",\"authors\":\"Saikat Das,&nbsp;Jie Feng,&nbsp;Wei Wang\",\"doi\":\"10.1146/annurev-chembioeng-112019-084830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the wake of sustainable development, materials research is going through a green revolution that is putting energy-efficient and environmentally friendly materials and methods in the limelight. In this quest for greener alternatives, covalent organic frameworks (COFs) have emerged as a new generation of designable crystalline porous polymers for a wide array of clean-energy and environmental applications. In this contribution, we categorically review the merits and shortcomings of COF bulk powders, nanosheets, freestanding thin films/membranes, and membranes on porous supports in various separation processes, including separation of gases, pervaporation, organic solvent nanofiltration, water purification, radionuclide sequestration, and chiral separations, with particular reference to COF material pore size, host-guest interactions, stability, selectivity, and permeability. This review covers the fabrication strategies of nanosheets, films, and membranes, as well as performance parameters, and provides an overview of the separation landscape with COFs in relation to other porous polymers, while seeking to interpret the future research opportunities in this field.</p>\",\"PeriodicalId\":8234,\"journal\":{\"name\":\"Annual review of chemical and biomolecular engineering\",\"volume\":\"11 \",\"pages\":\"131-153\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2020-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-chembioeng-112019-084830\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of chemical and biomolecular engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-chembioeng-112019-084830\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/3/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of chemical and biomolecular engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-chembioeng-112019-084830","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/3/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 29

摘要

在可持续发展的背景下,材料研究正在经历一场绿色革命,节能环保的材料和方法备受关注。在寻找更环保的替代品的过程中,共价有机框架(COFs)已经成为新一代可设计的晶体多孔聚合物,用于广泛的清洁能源和环境应用。在这篇文章中,我们对COF粉体、纳米片、独立薄膜/膜和多孔支撑膜在各种分离过程中的优缺点进行了综述,包括气体分离、渗透蒸发、有机溶剂纳滤、水净化、放射性核素隔离和手性分离,并特别提到了COF材料的孔径、主-guest相互作用、稳定性、选择性和渗透性。本文综述了纳米片、薄膜和膜的制备策略以及性能参数,并概述了COFs与其他多孔聚合物的分离前景,同时试图解释该领域未来的研究机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covalent Organic Frameworks in Separation.

In the wake of sustainable development, materials research is going through a green revolution that is putting energy-efficient and environmentally friendly materials and methods in the limelight. In this quest for greener alternatives, covalent organic frameworks (COFs) have emerged as a new generation of designable crystalline porous polymers for a wide array of clean-energy and environmental applications. In this contribution, we categorically review the merits and shortcomings of COF bulk powders, nanosheets, freestanding thin films/membranes, and membranes on porous supports in various separation processes, including separation of gases, pervaporation, organic solvent nanofiltration, water purification, radionuclide sequestration, and chiral separations, with particular reference to COF material pore size, host-guest interactions, stability, selectivity, and permeability. This review covers the fabrication strategies of nanosheets, films, and membranes, as well as performance parameters, and provides an overview of the separation landscape with COFs in relation to other porous polymers, while seeking to interpret the future research opportunities in this field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annual review of chemical and biomolecular engineering
Annual review of chemical and biomolecular engineering CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
16.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Chemical and Biomolecular Engineering aims to provide a perspective on the broad field of chemical (and related) engineering. The journal draws from disciplines as diverse as biology, physics, and engineering, with development of chemical products and processes as the unifying theme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信