健康老龄化和认知中的穹窿前和穹窿后微结构。

Brain and neuroscience advances Pub Date : 2020-01-22 eCollection Date: 2020-01-01 DOI:10.1177/2398212819899316
Bethany M Coad, Emma Craig, Rebecca Louch, John P Aggleton, Seralynne D Vann, Claudia Metzler-Baddeley
{"title":"健康老龄化和认知中的穹窿前和穹窿后微结构。","authors":"Bethany M Coad, Emma Craig, Rebecca Louch, John P Aggleton, Seralynne D Vann, Claudia Metzler-Baddeley","doi":"10.1177/2398212819899316","DOIUrl":null,"url":null,"abstract":"<p><p>The fornix is a key tract of the hippocampal formation, whose status is presumed to contribute to age-related cognitive decline. The precommissural and postcommissural fornix subdivisions form respective basal forebrain/frontal and diencephalic networks that may differentially affect aging and cognition. We employed multi-parametric magnetic resonance imaging (MRI) including neurite orientation density and dispersion imaging, quantitative magnetization transfer (qMT), and T<sub>1</sub>-relaxometry MRI to investigate the microstructural properties of these fornix subdivisions and their relationship with aging and cognition in 149 asymptomatic participants (38-71 years). Aging was associated with increased free water signal and reductions in myelin-sensitive R<sub>1</sub> and qMT indices but no apparent axon density differences in both precommissural and postcommissural fibers. Precommissural relative to postcommissural fibers showed a distinct microstructural pattern characterised by larger free water signal and axon orientation dispersion, with lower apparent myelin and axon density. Furthermore, differences in postcommissural microstructure were related to performance differences in object-location paired-associate learning. These results provide novel in vivo neuroimaging evidence for distinct microstructural properties of precommissural and postcommissural fibers that are consistent with their anatomy as found in axonal tracer studies, as well as for a contribution of postcommissural fibers to the learning of spatial configurations.</p>","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":"4 ","pages":"2398212819899316"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085915/pdf/","citationCount":"0","resultStr":"{\"title\":\"Precommissural and postcommissural fornix microstructure in healthy aging and cognition.\",\"authors\":\"Bethany M Coad, Emma Craig, Rebecca Louch, John P Aggleton, Seralynne D Vann, Claudia Metzler-Baddeley\",\"doi\":\"10.1177/2398212819899316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fornix is a key tract of the hippocampal formation, whose status is presumed to contribute to age-related cognitive decline. The precommissural and postcommissural fornix subdivisions form respective basal forebrain/frontal and diencephalic networks that may differentially affect aging and cognition. We employed multi-parametric magnetic resonance imaging (MRI) including neurite orientation density and dispersion imaging, quantitative magnetization transfer (qMT), and T<sub>1</sub>-relaxometry MRI to investigate the microstructural properties of these fornix subdivisions and their relationship with aging and cognition in 149 asymptomatic participants (38-71 years). Aging was associated with increased free water signal and reductions in myelin-sensitive R<sub>1</sub> and qMT indices but no apparent axon density differences in both precommissural and postcommissural fibers. Precommissural relative to postcommissural fibers showed a distinct microstructural pattern characterised by larger free water signal and axon orientation dispersion, with lower apparent myelin and axon density. Furthermore, differences in postcommissural microstructure were related to performance differences in object-location paired-associate learning. These results provide novel in vivo neuroimaging evidence for distinct microstructural properties of precommissural and postcommissural fibers that are consistent with their anatomy as found in axonal tracer studies, as well as for a contribution of postcommissural fibers to the learning of spatial configurations.</p>\",\"PeriodicalId\":72444,\"journal\":{\"name\":\"Brain and neuroscience advances\",\"volume\":\"4 \",\"pages\":\"2398212819899316\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085915/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and neuroscience advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2398212819899316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and neuroscience advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2398212819899316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

穹窿是海马形成的一个关键束,据推测其状态会导致与年龄相关的认知能力衰退。膜前和膜后穹窿分支分别形成基底前脑/额叶和间脑网络,可能会对衰老和认知产生不同的影响。我们采用了多参数磁共振成像(MRI)技术,包括神经元取向密度和弥散成像、定量磁化转移(qMT)和 T1 宽松度磁共振成像,研究了 149 名无症状参与者(38-71 岁)的这些穹窿分支的微观结构特性及其与衰老和认知的关系。衰老与游离水信号增加、髓鞘敏感 R1 和 qMT 指数降低有关,但在前突纤维和后突纤维中没有明显的轴突密度差异。相对于后神经纤维,前神经纤维显示出一种独特的微结构模式,其特点是自由水信号和轴突方向散布较大,而明显的髓鞘和轴突密度较低。此外,后神经纤维微结构的差异与物体定位配对联想学习的成绩差异有关。这些结果提供了新的体内神经影像学证据,证明前神经纤维和后神经纤维具有不同的微观结构特性,这与轴突示踪研究中发现的解剖结构一致,也证明了后神经纤维对空间构型学习的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Precommissural and postcommissural fornix microstructure in healthy aging and cognition.

Precommissural and postcommissural fornix microstructure in healthy aging and cognition.

Precommissural and postcommissural fornix microstructure in healthy aging and cognition.

Precommissural and postcommissural fornix microstructure in healthy aging and cognition.

The fornix is a key tract of the hippocampal formation, whose status is presumed to contribute to age-related cognitive decline. The precommissural and postcommissural fornix subdivisions form respective basal forebrain/frontal and diencephalic networks that may differentially affect aging and cognition. We employed multi-parametric magnetic resonance imaging (MRI) including neurite orientation density and dispersion imaging, quantitative magnetization transfer (qMT), and T1-relaxometry MRI to investigate the microstructural properties of these fornix subdivisions and their relationship with aging and cognition in 149 asymptomatic participants (38-71 years). Aging was associated with increased free water signal and reductions in myelin-sensitive R1 and qMT indices but no apparent axon density differences in both precommissural and postcommissural fibers. Precommissural relative to postcommissural fibers showed a distinct microstructural pattern characterised by larger free water signal and axon orientation dispersion, with lower apparent myelin and axon density. Furthermore, differences in postcommissural microstructure were related to performance differences in object-location paired-associate learning. These results provide novel in vivo neuroimaging evidence for distinct microstructural properties of precommissural and postcommissural fibers that are consistent with their anatomy as found in axonal tracer studies, as well as for a contribution of postcommissural fibers to the learning of spatial configurations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信