基于石英晶体微天平的水毒性监测MEMS生物传感器。

IF 2.1 4区 医学 Q2 Physics and Astronomy
Biointerphases Pub Date : 2020-03-26 DOI:10.1116/1.5142722
Kun-Lin Lee, Simon Ng, Fang Li, Anis Nurashikin Nordin, Ioana Voiculescu
{"title":"基于石英晶体微天平的水毒性监测MEMS生物传感器。","authors":"Kun-Lin Lee,&nbsp;Simon Ng,&nbsp;Fang Li,&nbsp;Anis Nurashikin Nordin,&nbsp;Ioana Voiculescu","doi":"10.1116/1.5142722","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the use of a commercial quartz crystal microbalance (QCM) to investigate live-cell activity in water-based toxic solutions. The QCM used in this research has a resonant frequency of 10 MHz and consists of an AT-cut quartz crystal with gold electrodes on both sides. This QCM was transformed into a functional biosensor by integrating with polydimethylsiloxane culturing chambers. Rainbow trout gill epithelial cells were cultured on the resonators as a sensorial layer. The fluctuation of the resonant frequency, due to the change of cell morphology and adhesion, is an indicator of water toxicity. The shift in the resonant frequency provides information about the viability of the cells after exposure to toxicants. The toxicity result shows distinct responses after exposing cells to 0.526 μM of pentachlorophenol (PCP) solution, which is the Military Exposure Guidelines concentration. This research demonstrated that the QCM is sensitive to a low concentration of PCP and no further modification of the QCM surface was required.</p>","PeriodicalId":49232,"journal":{"name":"Biointerphases","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2020-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1116/1.5142722","citationCount":"2","resultStr":"{\"title\":\"MEMS biosensor for monitoring water toxicity based on quartz crystal microbalance.\",\"authors\":\"Kun-Lin Lee,&nbsp;Simon Ng,&nbsp;Fang Li,&nbsp;Anis Nurashikin Nordin,&nbsp;Ioana Voiculescu\",\"doi\":\"10.1116/1.5142722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents the use of a commercial quartz crystal microbalance (QCM) to investigate live-cell activity in water-based toxic solutions. The QCM used in this research has a resonant frequency of 10 MHz and consists of an AT-cut quartz crystal with gold electrodes on both sides. This QCM was transformed into a functional biosensor by integrating with polydimethylsiloxane culturing chambers. Rainbow trout gill epithelial cells were cultured on the resonators as a sensorial layer. The fluctuation of the resonant frequency, due to the change of cell morphology and adhesion, is an indicator of water toxicity. The shift in the resonant frequency provides information about the viability of the cells after exposure to toxicants. The toxicity result shows distinct responses after exposing cells to 0.526 μM of pentachlorophenol (PCP) solution, which is the Military Exposure Guidelines concentration. This research demonstrated that the QCM is sensitive to a low concentration of PCP and no further modification of the QCM surface was required.</p>\",\"PeriodicalId\":49232,\"journal\":{\"name\":\"Biointerphases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1116/1.5142722\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerphases\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1116/1.5142722\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/1.5142722","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了使用商用石英晶体微天平(QCM)来研究水基有毒溶液中的活细胞活性。本研究中使用的QCM谐振频率为10 MHz,由at切割的石英晶体和两侧的金电极组成。将该QCM与聚二甲基硅氧烷培养箱结合,转化为功能性生物传感器。虹鳟鱼鳃上皮细胞作为感觉层在共振器上培养。共振频率的波动是由于细胞形态和粘附的变化而引起的,是水毒性的一个指标。共振频率的变化提供了暴露于有毒物质后细胞生存能力的信息。五氯酚(PCP)溶液浓度为0.526 μM(军事接触标准浓度)时,细胞毒性反应明显。该研究表明,QCM对低浓度的PCP敏感,不需要进一步修饰QCM表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MEMS biosensor for monitoring water toxicity based on quartz crystal microbalance.

This paper presents the use of a commercial quartz crystal microbalance (QCM) to investigate live-cell activity in water-based toxic solutions. The QCM used in this research has a resonant frequency of 10 MHz and consists of an AT-cut quartz crystal with gold electrodes on both sides. This QCM was transformed into a functional biosensor by integrating with polydimethylsiloxane culturing chambers. Rainbow trout gill epithelial cells were cultured on the resonators as a sensorial layer. The fluctuation of the resonant frequency, due to the change of cell morphology and adhesion, is an indicator of water toxicity. The shift in the resonant frequency provides information about the viability of the cells after exposure to toxicants. The toxicity result shows distinct responses after exposing cells to 0.526 μM of pentachlorophenol (PCP) solution, which is the Military Exposure Guidelines concentration. This research demonstrated that the QCM is sensitive to a low concentration of PCP and no further modification of the QCM surface was required.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biointerphases
Biointerphases BIOPHYSICS-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
4.10
自引率
0.00%
发文量
35
审稿时长
>12 weeks
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信