{"title":"中国的 Fusarium incarnatum-equiseti complex。","authors":"M M Wang, Q Chen, Y Z Diao, W J Duan, L Cai","doi":"10.3767/persoonia.2019.43.03","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>Fusarium incarnatum-equiseti</i> species complex (FIESC) is shown to encompass 33 phylogenetic species, across a wide range of habitats/hosts around the world. Here, 77 pathogenic and endophytic FIESC strains collected from China were studied to investigate the phylogenetic relationships within FIESC, based on a polyphasic approach combining morphological characters, multi-locus phylogeny and distribution patterns. The importance of standardised cultural methods to the identification and classification of taxa in the FIESC is highlighted. Morphological features of macroconidia, including the shape, size and septum number, were considered as diagnostic characters within the FIESC. A multi-locus dataset encompassing the 5.8S nuclear ribosomal gene with the two flanking internal transcribed spacers (ITS), translation elongation factor (<i>EF-1α</i>), calmodulin (<i>CAM</i>), partial RNA polymerase largest subunit (<i>RPB1</i>) and partial RNA polymerase second largest subunit (<i>RPB2</i>), was generated to distinguish species within the FIESC. Nine novel species were identified and described. The <i>RPB2</i> locus is demonstrated to be a primary barcode with high success rate in amplification, and to have the best species delimitation compared to the other four tested loci.</p>","PeriodicalId":20014,"journal":{"name":"Persoonia","volume":"43 ","pages":"70-89"},"PeriodicalIF":9.5000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9f/21/per-43-70.PMC7085858.pdf","citationCount":"0","resultStr":"{\"title\":\"<i>Fusarium incarnatum-equiseti</i> complex from China.\",\"authors\":\"M M Wang, Q Chen, Y Z Diao, W J Duan, L Cai\",\"doi\":\"10.3767/persoonia.2019.43.03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <i>Fusarium incarnatum-equiseti</i> species complex (FIESC) is shown to encompass 33 phylogenetic species, across a wide range of habitats/hosts around the world. Here, 77 pathogenic and endophytic FIESC strains collected from China were studied to investigate the phylogenetic relationships within FIESC, based on a polyphasic approach combining morphological characters, multi-locus phylogeny and distribution patterns. The importance of standardised cultural methods to the identification and classification of taxa in the FIESC is highlighted. Morphological features of macroconidia, including the shape, size and septum number, were considered as diagnostic characters within the FIESC. A multi-locus dataset encompassing the 5.8S nuclear ribosomal gene with the two flanking internal transcribed spacers (ITS), translation elongation factor (<i>EF-1α</i>), calmodulin (<i>CAM</i>), partial RNA polymerase largest subunit (<i>RPB1</i>) and partial RNA polymerase second largest subunit (<i>RPB2</i>), was generated to distinguish species within the FIESC. Nine novel species were identified and described. The <i>RPB2</i> locus is demonstrated to be a primary barcode with high success rate in amplification, and to have the best species delimitation compared to the other four tested loci.</p>\",\"PeriodicalId\":20014,\"journal\":{\"name\":\"Persoonia\",\"volume\":\"43 \",\"pages\":\"70-89\"},\"PeriodicalIF\":9.5000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9f/21/per-43-70.PMC7085858.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Persoonia\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3767/persoonia.2019.43.03\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/6/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MYCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Persoonia","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3767/persoonia.2019.43.03","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/6/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
The Fusarium incarnatum-equiseti species complex (FIESC) is shown to encompass 33 phylogenetic species, across a wide range of habitats/hosts around the world. Here, 77 pathogenic and endophytic FIESC strains collected from China were studied to investigate the phylogenetic relationships within FIESC, based on a polyphasic approach combining morphological characters, multi-locus phylogeny and distribution patterns. The importance of standardised cultural methods to the identification and classification of taxa in the FIESC is highlighted. Morphological features of macroconidia, including the shape, size and septum number, were considered as diagnostic characters within the FIESC. A multi-locus dataset encompassing the 5.8S nuclear ribosomal gene with the two flanking internal transcribed spacers (ITS), translation elongation factor (EF-1α), calmodulin (CAM), partial RNA polymerase largest subunit (RPB1) and partial RNA polymerase second largest subunit (RPB2), was generated to distinguish species within the FIESC. Nine novel species were identified and described. The RPB2 locus is demonstrated to be a primary barcode with high success rate in amplification, and to have the best species delimitation compared to the other four tested loci.
期刊介绍:
Persoonia aspires to publish papers focusing on the molecular systematics and evolution of fungi. Additionally, it seeks to advance fungal taxonomy by employing a polythetic approach to elucidate the genuine phylogeny and relationships within the kingdom Fungi. The journal is dedicated to disseminating high-quality papers that unravel both known and novel fungal taxa at the DNA level. Moreover, it endeavors to provide fresh insights into evolutionary processes and relationships. The scope of papers considered encompasses research articles, along with topical and book reviews.