{"title":"探索后基因组时代植物特化代谢的未知领域。","authors":"Joseph R Jacobowitz, Jing-Ke Weng","doi":"10.1146/annurev-arplant-081519-035634","DOIUrl":null,"url":null,"abstract":"<p><p>For millennia, humans have used plants for food, raw materials, and medicines, but only within the past two centuries have we begun to connect particular plant metabolites with specific properties and utilities. Since the utility of classical molecular genetics beyond model species is limited, the vast specialized metabolic systems present in the Earth's flora remain largely unstudied. With an explosion in genomics resources and a rapidly expanding toolbox over the past decade, exploration of plant specialized metabolism in nonmodel species is becoming more feasible than ever before. We review the state-of-the-art tools that have enabled this rapid progress. We present recent examples of de novo biosynthetic pathway discovery that employ various innovative approaches. We also draw attention to the higher-order organization of plant specialized metabolism at subcellular, cellular, tissue, interorgan, and interspecies levels, which will have important implications for the future design of comprehensive metabolic engineering strategies.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":"71 ","pages":"631-658"},"PeriodicalIF":21.3000,"publicationDate":"2020-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-arplant-081519-035634","citationCount":"54","resultStr":"{\"title\":\"Exploring Uncharted Territories of Plant Specialized Metabolism in the Postgenomic Era.\",\"authors\":\"Joseph R Jacobowitz, Jing-Ke Weng\",\"doi\":\"10.1146/annurev-arplant-081519-035634\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For millennia, humans have used plants for food, raw materials, and medicines, but only within the past two centuries have we begun to connect particular plant metabolites with specific properties and utilities. Since the utility of classical molecular genetics beyond model species is limited, the vast specialized metabolic systems present in the Earth's flora remain largely unstudied. With an explosion in genomics resources and a rapidly expanding toolbox over the past decade, exploration of plant specialized metabolism in nonmodel species is becoming more feasible than ever before. We review the state-of-the-art tools that have enabled this rapid progress. We present recent examples of de novo biosynthetic pathway discovery that employ various innovative approaches. We also draw attention to the higher-order organization of plant specialized metabolism at subcellular, cellular, tissue, interorgan, and interspecies levels, which will have important implications for the future design of comprehensive metabolic engineering strategies.</p>\",\"PeriodicalId\":8335,\"journal\":{\"name\":\"Annual review of plant biology\",\"volume\":\"71 \",\"pages\":\"631-658\"},\"PeriodicalIF\":21.3000,\"publicationDate\":\"2020-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1146/annurev-arplant-081519-035634\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-arplant-081519-035634\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/3/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-arplant-081519-035634","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/3/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Exploring Uncharted Territories of Plant Specialized Metabolism in the Postgenomic Era.
For millennia, humans have used plants for food, raw materials, and medicines, but only within the past two centuries have we begun to connect particular plant metabolites with specific properties and utilities. Since the utility of classical molecular genetics beyond model species is limited, the vast specialized metabolic systems present in the Earth's flora remain largely unstudied. With an explosion in genomics resources and a rapidly expanding toolbox over the past decade, exploration of plant specialized metabolism in nonmodel species is becoming more feasible than ever before. We review the state-of-the-art tools that have enabled this rapid progress. We present recent examples of de novo biosynthetic pathway discovery that employ various innovative approaches. We also draw attention to the higher-order organization of plant specialized metabolism at subcellular, cellular, tissue, interorgan, and interspecies levels, which will have important implications for the future design of comprehensive metabolic engineering strategies.
期刊介绍:
The Annual Review of Plant Biology is a peer-reviewed scientific journal published by Annual Reviews. It has been in publication since 1950 and covers significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.