一氧化氮是一种多模态的大脑递质。

Brain and neuroscience advances Pub Date : 2018-12-04 eCollection Date: 2018-01-01 DOI:10.1177/2398212818810683
John Garthwaite
{"title":"一氧化氮是一种多模态的大脑递质。","authors":"John Garthwaite","doi":"10.1177/2398212818810683","DOIUrl":null,"url":null,"abstract":"<p><p>One of the simplest molecules in existence, nitric oxide, burst into all areas of biology some 30 years ago when it was established as a major signalling molecule in the cardiovascular, nervous and immune systems. Most regions of the mammalian brain synthesise nitric oxide and it has many diverse roles both during development and in adulthood. Frequently, nitric oxide synthesis is coupled to the activation of NMDA receptors and its physiological effects are mediated by enzyme-linked receptors that generate cGMP. Generally, nitric oxide appears to operate in two main modes: first, in a near synapse-specific manner acting either retrogradely or anterogradely and, second, when multiple nearby sources are active simultaneously, as a volume transmitter enabling signalling to diverse targets irrespective of anatomical connectivity. The rapid diffusibility of nitric oxide and the efficient capture of fleeting, subnanomolar nitric oxide concentrations by its specialised receptors underlie these modes of operation.</p>","PeriodicalId":72444,"journal":{"name":"Brain and neuroscience advances","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/2398212818810683","citationCount":"9","resultStr":"{\"title\":\"Nitric oxide as a multimodal brain transmitter.\",\"authors\":\"John Garthwaite\",\"doi\":\"10.1177/2398212818810683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>One of the simplest molecules in existence, nitric oxide, burst into all areas of biology some 30 years ago when it was established as a major signalling molecule in the cardiovascular, nervous and immune systems. Most regions of the mammalian brain synthesise nitric oxide and it has many diverse roles both during development and in adulthood. Frequently, nitric oxide synthesis is coupled to the activation of NMDA receptors and its physiological effects are mediated by enzyme-linked receptors that generate cGMP. Generally, nitric oxide appears to operate in two main modes: first, in a near synapse-specific manner acting either retrogradely or anterogradely and, second, when multiple nearby sources are active simultaneously, as a volume transmitter enabling signalling to diverse targets irrespective of anatomical connectivity. The rapid diffusibility of nitric oxide and the efficient capture of fleeting, subnanomolar nitric oxide concentrations by its specialised receptors underlie these modes of operation.</p>\",\"PeriodicalId\":72444,\"journal\":{\"name\":\"Brain and neuroscience advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/2398212818810683\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and neuroscience advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/2398212818810683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and neuroscience advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2398212818810683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

一氧化氮是现存最简单的分子之一,大约30年前,当它被确定为心血管系统、神经系统和免疫系统中的主要信号分子时,它突然进入了生物学的所有领域。哺乳动物大脑的大部分区域合成一氧化氮,它在发育和成年期间都有许多不同的作用。通常,一氧化氮的合成与NMDA受体的激活耦合,其生理作用是由产生cGMP的酶联受体介导的。一般来说,一氧化氮似乎以两种主要模式运作:第一,以近突触特异性的方式逆行或顺行作用;第二,当多个附近源同时活跃时,作为一个体积发射器,无论解剖连通性如何,都能向不同的靶标发出信号。一氧化氮的快速扩散和其特殊受体对短暂的亚纳摩尔浓度的有效捕获是这些操作模式的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nitric oxide as a multimodal brain transmitter.

Nitric oxide as a multimodal brain transmitter.

One of the simplest molecules in existence, nitric oxide, burst into all areas of biology some 30 years ago when it was established as a major signalling molecule in the cardiovascular, nervous and immune systems. Most regions of the mammalian brain synthesise nitric oxide and it has many diverse roles both during development and in adulthood. Frequently, nitric oxide synthesis is coupled to the activation of NMDA receptors and its physiological effects are mediated by enzyme-linked receptors that generate cGMP. Generally, nitric oxide appears to operate in two main modes: first, in a near synapse-specific manner acting either retrogradely or anterogradely and, second, when multiple nearby sources are active simultaneously, as a volume transmitter enabling signalling to diverse targets irrespective of anatomical connectivity. The rapid diffusibility of nitric oxide and the efficient capture of fleeting, subnanomolar nitric oxide concentrations by its specialised receptors underlie these modes of operation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信