Zhexin Xie, August G Domel, Ning An, Connor Green, Zheyuan Gong, Tianmiao Wang, Elias M Knubben, James C Weaver, Katia Bertoldi, Li Wen
{"title":"章鱼臂启发锥形软驱动器与吸盘改善抓取。","authors":"Zhexin Xie, August G Domel, Ning An, Connor Green, Zheyuan Gong, Tianmiao Wang, Elias M Knubben, James C Weaver, Katia Bertoldi, Li Wen","doi":"10.1089/soro.2019.0082","DOIUrl":null,"url":null,"abstract":"<p><p>Octopuses can employ their tapered arms to catch prey of all shapes and sizes due to their dexterity, flexibility, and gripping power. Intrigued by variability in arm taper angle between different octopus species, we explored the utility of designing soft actuators exhibiting a distinctive conical geometry, compared with more traditional cylindrical forms. We find that these octopus-inspired conical-shaped actuators exhibit a wide range of bending curvatures that can be tuned by simply altering their taper angle and they also demonstrate greater flexibility compared with their cylindrical counterparts. The taper angle and bending curvature are inversely related, whereas taper angle and applied bending force are directly related. To further expand the functionality of our soft actuators, we incorporated vacuum-actuated suckers into the actuators for the production of a fully integrated octopus arm-inspired gripper. Notably, our results reveal that because of their enhanced flexibility, these tapered actuators with suckers have better gripping power than their cylindrical-shaped counterparts and require significantly larger forces to be detached from both flat and curved surfaces. Finally, we show that by choosing appropriate taper angles, our tapered actuators with suckers can grip, move, and place a remarkably wide range of objects with flat, nonplanar, smooth, or rough surfaces, as well as retrieve objects through narrow openings. The results from this study not only provide new design insights into the creation of next-generation soft actuators for gripping a wide range of morphologically diverse objects but also contribute to our understanding of the functional significance of arm taper angle variability across octopus species.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":"7 5","pages":"639-648"},"PeriodicalIF":6.1000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/soro.2019.0082","citationCount":"142","resultStr":"{\"title\":\"Octopus Arm-Inspired Tapered Soft Actuators with Suckers for Improved Grasping.\",\"authors\":\"Zhexin Xie, August G Domel, Ning An, Connor Green, Zheyuan Gong, Tianmiao Wang, Elias M Knubben, James C Weaver, Katia Bertoldi, Li Wen\",\"doi\":\"10.1089/soro.2019.0082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Octopuses can employ their tapered arms to catch prey of all shapes and sizes due to their dexterity, flexibility, and gripping power. Intrigued by variability in arm taper angle between different octopus species, we explored the utility of designing soft actuators exhibiting a distinctive conical geometry, compared with more traditional cylindrical forms. We find that these octopus-inspired conical-shaped actuators exhibit a wide range of bending curvatures that can be tuned by simply altering their taper angle and they also demonstrate greater flexibility compared with their cylindrical counterparts. The taper angle and bending curvature are inversely related, whereas taper angle and applied bending force are directly related. To further expand the functionality of our soft actuators, we incorporated vacuum-actuated suckers into the actuators for the production of a fully integrated octopus arm-inspired gripper. Notably, our results reveal that because of their enhanced flexibility, these tapered actuators with suckers have better gripping power than their cylindrical-shaped counterparts and require significantly larger forces to be detached from both flat and curved surfaces. Finally, we show that by choosing appropriate taper angles, our tapered actuators with suckers can grip, move, and place a remarkably wide range of objects with flat, nonplanar, smooth, or rough surfaces, as well as retrieve objects through narrow openings. The results from this study not only provide new design insights into the creation of next-generation soft actuators for gripping a wide range of morphologically diverse objects but also contribute to our understanding of the functional significance of arm taper angle variability across octopus species.</p>\",\"PeriodicalId\":48685,\"journal\":{\"name\":\"Soft Robotics\",\"volume\":\"7 5\",\"pages\":\"639-648\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/soro.2019.0082\",\"citationCount\":\"142\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2019.0082\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/2/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2019.0082","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Octopus Arm-Inspired Tapered Soft Actuators with Suckers for Improved Grasping.
Octopuses can employ their tapered arms to catch prey of all shapes and sizes due to their dexterity, flexibility, and gripping power. Intrigued by variability in arm taper angle between different octopus species, we explored the utility of designing soft actuators exhibiting a distinctive conical geometry, compared with more traditional cylindrical forms. We find that these octopus-inspired conical-shaped actuators exhibit a wide range of bending curvatures that can be tuned by simply altering their taper angle and they also demonstrate greater flexibility compared with their cylindrical counterparts. The taper angle and bending curvature are inversely related, whereas taper angle and applied bending force are directly related. To further expand the functionality of our soft actuators, we incorporated vacuum-actuated suckers into the actuators for the production of a fully integrated octopus arm-inspired gripper. Notably, our results reveal that because of their enhanced flexibility, these tapered actuators with suckers have better gripping power than their cylindrical-shaped counterparts and require significantly larger forces to be detached from both flat and curved surfaces. Finally, we show that by choosing appropriate taper angles, our tapered actuators with suckers can grip, move, and place a remarkably wide range of objects with flat, nonplanar, smooth, or rough surfaces, as well as retrieve objects through narrow openings. The results from this study not only provide new design insights into the creation of next-generation soft actuators for gripping a wide range of morphologically diverse objects but also contribute to our understanding of the functional significance of arm taper angle variability across octopus species.
期刊介绍:
Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made.
With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.