利用3D打印技术改善胃肠道微生物健康的核壳多药平台。

IF 8 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Li-Fang Zhu, Xing Chen, Zeeshan Ahmad, Yu Peng, Ming-Wei Chang
{"title":"利用3D打印技术改善胃肠道微生物健康的核壳多药平台。","authors":"Li-Fang Zhu,&nbsp;Xing Chen,&nbsp;Zeeshan Ahmad,&nbsp;Yu Peng,&nbsp;Ming-Wei Chang","doi":"10.1088/1758-5090/ab782c","DOIUrl":null,"url":null,"abstract":"<p><p>Improving the proliferation of probiotics (ca. Bifidobacterium) and inhibiting the growth of pathogenic bacteria (ca. Escherichia coli) is crucial for human health. This study demonstrates the fabrication of core-shell structure fibers using electrohydrodynamic 3D printing to help improve gastrointestinal tract microbial content. These fibers have various geometries and are capable of encapsulating stachyose into cellulose acetate (shell layer) and loading proteoglycan into polyacrylic resin II (core layer). The impact of membrane geometry on drug release behavior and the effect of exchanging the loading site on physicochemical properties of the resulting fibers were studied. The printed fibrous membranes possess a biphasic drug release profile in simulated intestinal fluid with a burst release within the first 12 h and a slower sustained release up to 72 h. The speed order priority for drug release rate of the printed membrane was whole-circle > semi-circle > square. Moreover, the membranes exhibit good biocompatibility on L929 cells and excellent improvement effects on Bifidobacterium bifidum, combining inhibition effects on Escherichia coli. In summary, the dual-drug fibrous membranes presented here and their precision-fabricated patterns pave a new direction for improving the gastrointestinal tract microbial ecosystem health in the human body.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":"12 2","pages":"025026"},"PeriodicalIF":8.0000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1758-5090/ab782c","citationCount":"20","resultStr":"{\"title\":\"A core-shell multi-drug platform to improve gastrointestinal tract microbial health using 3D printing.\",\"authors\":\"Li-Fang Zhu,&nbsp;Xing Chen,&nbsp;Zeeshan Ahmad,&nbsp;Yu Peng,&nbsp;Ming-Wei Chang\",\"doi\":\"10.1088/1758-5090/ab782c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Improving the proliferation of probiotics (ca. Bifidobacterium) and inhibiting the growth of pathogenic bacteria (ca. Escherichia coli) is crucial for human health. This study demonstrates the fabrication of core-shell structure fibers using electrohydrodynamic 3D printing to help improve gastrointestinal tract microbial content. These fibers have various geometries and are capable of encapsulating stachyose into cellulose acetate (shell layer) and loading proteoglycan into polyacrylic resin II (core layer). The impact of membrane geometry on drug release behavior and the effect of exchanging the loading site on physicochemical properties of the resulting fibers were studied. The printed fibrous membranes possess a biphasic drug release profile in simulated intestinal fluid with a burst release within the first 12 h and a slower sustained release up to 72 h. The speed order priority for drug release rate of the printed membrane was whole-circle > semi-circle > square. Moreover, the membranes exhibit good biocompatibility on L929 cells and excellent improvement effects on Bifidobacterium bifidum, combining inhibition effects on Escherichia coli. In summary, the dual-drug fibrous membranes presented here and their precision-fabricated patterns pave a new direction for improving the gastrointestinal tract microbial ecosystem health in the human body.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\"12 2\",\"pages\":\"025026\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2020-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1088/1758-5090/ab782c\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/ab782c\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ab782c","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 20

摘要

促进益生菌(双歧杆菌)的增殖和抑制致病菌(大肠杆菌)的生长对人类健康至关重要。这项研究展示了利用电流体动力3D打印技术制造核壳结构纤维,以帮助提高胃肠道微生物含量。这些纤维具有不同的几何形状,能够将水苏糖封装到醋酸纤维素(外壳层)中,并将蛋白聚糖装入聚丙烯酸树脂II(核心层)中。研究了膜的几何形状对药物释放行为的影响,以及交换负载位置对所得纤维理化性质的影响。打印纤维膜在模拟肠液中呈双相释放,前12 h呈爆发释放,后72 h呈缓慢缓释。打印纤维膜的药物释放速度优先顺序为整圆>半圆>方形。此外,该膜对L929细胞具有良好的生物相容性,对两歧双歧杆菌具有良好的改善作用,并结合对大肠杆菌的抑制作用。综上所述,本文提出的双药纤维膜及其精密制造模式为改善人体胃肠道微生物生态系统健康开辟了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A core-shell multi-drug platform to improve gastrointestinal tract microbial health using 3D printing.

Improving the proliferation of probiotics (ca. Bifidobacterium) and inhibiting the growth of pathogenic bacteria (ca. Escherichia coli) is crucial for human health. This study demonstrates the fabrication of core-shell structure fibers using electrohydrodynamic 3D printing to help improve gastrointestinal tract microbial content. These fibers have various geometries and are capable of encapsulating stachyose into cellulose acetate (shell layer) and loading proteoglycan into polyacrylic resin II (core layer). The impact of membrane geometry on drug release behavior and the effect of exchanging the loading site on physicochemical properties of the resulting fibers were studied. The printed fibrous membranes possess a biphasic drug release profile in simulated intestinal fluid with a burst release within the first 12 h and a slower sustained release up to 72 h. The speed order priority for drug release rate of the printed membrane was whole-circle > semi-circle > square. Moreover, the membranes exhibit good biocompatibility on L929 cells and excellent improvement effects on Bifidobacterium bifidum, combining inhibition effects on Escherichia coli. In summary, the dual-drug fibrous membranes presented here and their precision-fabricated patterns pave a new direction for improving the gastrointestinal tract microbial ecosystem health in the human body.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信