{"title":"淀粉:与植物生长相关的灵活、适应性强的碳储存。","authors":"Alison M Smith, Samuel C Zeeman","doi":"10.1146/annurev-arplant-050718-100241","DOIUrl":null,"url":null,"abstract":"<p><p>Research in the past decade has uncovered new and surprising information about the pathways of starch synthesis and degradation. This includes the discovery of previously unsuspected protein families required both for processes and for the long-sought mechanism of initiation of starch granules. There is also growing recognition of the central role of leaf starch turnover in making carbon available for growth across the day-night cycle. Sophisticated systems-level control mechanisms involving the circadian clock set rates of nighttime starch mobilization that maintain a steady supply of carbon until dawn and modulate partitioning of photosynthate into starch in the light, optimizing the fraction of assimilated carbon that can be used for growth. These discoveries also uncover complexities: Results from experiments with <i>Arabidopsis</i> leaves in conventional controlled environments are not necessarily applicable to other organs or species or to growth in natural, fluctuating environments.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":"71 ","pages":"217-245"},"PeriodicalIF":26.5000,"publicationDate":"2020-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Starch: A Flexible, Adaptable Carbon Store Coupled to Plant Growth.\",\"authors\":\"Alison M Smith, Samuel C Zeeman\",\"doi\":\"10.1146/annurev-arplant-050718-100241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Research in the past decade has uncovered new and surprising information about the pathways of starch synthesis and degradation. This includes the discovery of previously unsuspected protein families required both for processes and for the long-sought mechanism of initiation of starch granules. There is also growing recognition of the central role of leaf starch turnover in making carbon available for growth across the day-night cycle. Sophisticated systems-level control mechanisms involving the circadian clock set rates of nighttime starch mobilization that maintain a steady supply of carbon until dawn and modulate partitioning of photosynthate into starch in the light, optimizing the fraction of assimilated carbon that can be used for growth. These discoveries also uncover complexities: Results from experiments with <i>Arabidopsis</i> leaves in conventional controlled environments are not necessarily applicable to other organs or species or to growth in natural, fluctuating environments.</p>\",\"PeriodicalId\":8335,\"journal\":{\"name\":\"Annual review of plant biology\",\"volume\":\"71 \",\"pages\":\"217-245\"},\"PeriodicalIF\":26.5000,\"publicationDate\":\"2020-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-arplant-050718-100241\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/2/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-arplant-050718-100241","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Starch: A Flexible, Adaptable Carbon Store Coupled to Plant Growth.
Research in the past decade has uncovered new and surprising information about the pathways of starch synthesis and degradation. This includes the discovery of previously unsuspected protein families required both for processes and for the long-sought mechanism of initiation of starch granules. There is also growing recognition of the central role of leaf starch turnover in making carbon available for growth across the day-night cycle. Sophisticated systems-level control mechanisms involving the circadian clock set rates of nighttime starch mobilization that maintain a steady supply of carbon until dawn and modulate partitioning of photosynthate into starch in the light, optimizing the fraction of assimilated carbon that can be used for growth. These discoveries also uncover complexities: Results from experiments with Arabidopsis leaves in conventional controlled environments are not necessarily applicable to other organs or species or to growth in natural, fluctuating environments.
期刊介绍:
The Annual Review of Plant Biology is a peer-reviewed scientific journal published by Annual Reviews. It has been in publication since 1950 and covers significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.