Fang Cai, Yandi Liu, Dhanushka S Hettiarachichi, Fenglei Wang, Jie Li, Bruce Sunderland, Duo Li
{"title":"西美尼酸对肝、脑n-3 PUFA含量的调节作用。","authors":"Fang Cai, Yandi Liu, Dhanushka S Hettiarachichi, Fenglei Wang, Jie Li, Bruce Sunderland, Duo Li","doi":"10.1159/000502773","DOIUrl":null,"url":null,"abstract":"<p><strong>Background/aims: </strong>Ximenynic acid is a rare conjugated enyne fatty acid found primarily in plants in the Santalaceae family. It has been reported that sandalwood seed oil (SWSO) affects fatty acid metabolism in animal studies; however, the effects of pure ximenynic acid remain unclear. The present study aimed to study the impact of SWSO and ximenynic acid on n-3 fatty acid metabolism in the liver and brain.</p><p><strong>Methods: </strong>Thirty C57BL/6 male mice aged 4 weeks were fed SWSO (1.0 mL/20 g bodyweight), olive oil (OO), or a combination of SWSO and OO (n = 10/group) for 8 weeks. Liver and brain fatty acid compositions were determined using gas chromatography. HepG2 cells were treated with up to 150 μM ximenynic acid and oleic acid for 48-72 h. The expression and abundance of genes and proteins relevant to n-3 fatty acid metabolism pathways were investigated.</p><p><strong>Results: </strong>The intake of SWSO in mice elevated the levels of total n-3 fatty acids and decreased total n-9 fatty acids in the liver (p < 0.05) compared with the OO group. In contrast, total n-3 fatty acids were significantly decreased in the brain (p < 0.05). HepG2 cells treated with ximenynic acid for 48 h showed significant reductions in n-9 fatty acids and docosahexaenoic acid (C22:6n-3) (p < 0.05) compared with HepG2 cells treated with oleic acid. In HepG2 cells, stearoyl-CoA desaturase (SCD) and fatty acid desaturase 2 (FADS2) gene expression, as well as FADS2 protein expression, were significantly down-regulated after a 72-h incubation with 150 μM of ximenynic acid compared with the vehicle (p < 0.05).</p><p><strong>Conclusion: </strong>Ximenynic acid may regulate fatty acid metabolism by suppressing the expression of key enzymes of lipid metabolism. In contrast, SWSO, which has a high level of C18:3n-3, positively affected n-3 fatty acid synthesis in mouse liver compared to pure ximenynic acid. We hypothesize that a high level of precursor C18:3n-3 in SWSO promotes the endogenous synthesis of C22:6n-3 despite the presence of ximenynic acid.</p>","PeriodicalId":18030,"journal":{"name":"Lifestyle Genomics","volume":"13 2","pages":"64-73"},"PeriodicalIF":2.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000502773","citationCount":"6","resultStr":"{\"title\":\"Ximenynic Acid Regulation of n-3 PUFA Content in Liver and Brain.\",\"authors\":\"Fang Cai, Yandi Liu, Dhanushka S Hettiarachichi, Fenglei Wang, Jie Li, Bruce Sunderland, Duo Li\",\"doi\":\"10.1159/000502773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background/aims: </strong>Ximenynic acid is a rare conjugated enyne fatty acid found primarily in plants in the Santalaceae family. It has been reported that sandalwood seed oil (SWSO) affects fatty acid metabolism in animal studies; however, the effects of pure ximenynic acid remain unclear. The present study aimed to study the impact of SWSO and ximenynic acid on n-3 fatty acid metabolism in the liver and brain.</p><p><strong>Methods: </strong>Thirty C57BL/6 male mice aged 4 weeks were fed SWSO (1.0 mL/20 g bodyweight), olive oil (OO), or a combination of SWSO and OO (n = 10/group) for 8 weeks. Liver and brain fatty acid compositions were determined using gas chromatography. HepG2 cells were treated with up to 150 μM ximenynic acid and oleic acid for 48-72 h. The expression and abundance of genes and proteins relevant to n-3 fatty acid metabolism pathways were investigated.</p><p><strong>Results: </strong>The intake of SWSO in mice elevated the levels of total n-3 fatty acids and decreased total n-9 fatty acids in the liver (p < 0.05) compared with the OO group. In contrast, total n-3 fatty acids were significantly decreased in the brain (p < 0.05). HepG2 cells treated with ximenynic acid for 48 h showed significant reductions in n-9 fatty acids and docosahexaenoic acid (C22:6n-3) (p < 0.05) compared with HepG2 cells treated with oleic acid. In HepG2 cells, stearoyl-CoA desaturase (SCD) and fatty acid desaturase 2 (FADS2) gene expression, as well as FADS2 protein expression, were significantly down-regulated after a 72-h incubation with 150 μM of ximenynic acid compared with the vehicle (p < 0.05).</p><p><strong>Conclusion: </strong>Ximenynic acid may regulate fatty acid metabolism by suppressing the expression of key enzymes of lipid metabolism. In contrast, SWSO, which has a high level of C18:3n-3, positively affected n-3 fatty acid synthesis in mouse liver compared to pure ximenynic acid. We hypothesize that a high level of precursor C18:3n-3 in SWSO promotes the endogenous synthesis of C22:6n-3 despite the presence of ximenynic acid.</p>\",\"PeriodicalId\":18030,\"journal\":{\"name\":\"Lifestyle Genomics\",\"volume\":\"13 2\",\"pages\":\"64-73\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000502773\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifestyle Genomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000502773\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/2/7 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifestyle Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000502773","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/2/7 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Ximenynic Acid Regulation of n-3 PUFA Content in Liver and Brain.
Background/aims: Ximenynic acid is a rare conjugated enyne fatty acid found primarily in plants in the Santalaceae family. It has been reported that sandalwood seed oil (SWSO) affects fatty acid metabolism in animal studies; however, the effects of pure ximenynic acid remain unclear. The present study aimed to study the impact of SWSO and ximenynic acid on n-3 fatty acid metabolism in the liver and brain.
Methods: Thirty C57BL/6 male mice aged 4 weeks were fed SWSO (1.0 mL/20 g bodyweight), olive oil (OO), or a combination of SWSO and OO (n = 10/group) for 8 weeks. Liver and brain fatty acid compositions were determined using gas chromatography. HepG2 cells were treated with up to 150 μM ximenynic acid and oleic acid for 48-72 h. The expression and abundance of genes and proteins relevant to n-3 fatty acid metabolism pathways were investigated.
Results: The intake of SWSO in mice elevated the levels of total n-3 fatty acids and decreased total n-9 fatty acids in the liver (p < 0.05) compared with the OO group. In contrast, total n-3 fatty acids were significantly decreased in the brain (p < 0.05). HepG2 cells treated with ximenynic acid for 48 h showed significant reductions in n-9 fatty acids and docosahexaenoic acid (C22:6n-3) (p < 0.05) compared with HepG2 cells treated with oleic acid. In HepG2 cells, stearoyl-CoA desaturase (SCD) and fatty acid desaturase 2 (FADS2) gene expression, as well as FADS2 protein expression, were significantly down-regulated after a 72-h incubation with 150 μM of ximenynic acid compared with the vehicle (p < 0.05).
Conclusion: Ximenynic acid may regulate fatty acid metabolism by suppressing the expression of key enzymes of lipid metabolism. In contrast, SWSO, which has a high level of C18:3n-3, positively affected n-3 fatty acid synthesis in mouse liver compared to pure ximenynic acid. We hypothesize that a high level of precursor C18:3n-3 in SWSO promotes the endogenous synthesis of C22:6n-3 despite the presence of ximenynic acid.
期刊介绍:
Lifestyle Genomics aims to provide a forum for highlighting new advances in the broad area of lifestyle-gene interactions and their influence on health and disease. The journal welcomes novel contributions that investigate how genetics may influence a person’s response to lifestyle factors, such as diet and nutrition, natural health products, physical activity, and sleep, amongst others. Additionally, contributions examining how lifestyle factors influence the expression/abundance of genes, proteins and metabolites in cell and animal models as well as in humans are also of interest. The journal will publish high-quality original research papers, brief research communications, reviews outlining timely advances in the field, and brief research methods pertaining to lifestyle genomics. It will also include a unique section under the heading “Market Place” presenting articles of companies active in the area of lifestyle genomics. Research articles will undergo rigorous scientific as well as statistical/bioinformatic review to ensure excellence.